Spaces:
Paused
Paused
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. | |
It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. | |
""" | |
import random | |
import numpy as np | |
import torch.utils.data as data | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from abc import ABC, abstractmethod | |
class BaseDataset(data.Dataset, ABC): | |
"""This class is an abstract base class (ABC) for datasets. | |
To create a subclass, you need to implement the following four functions: | |
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). | |
-- <__len__>: return the size of dataset. | |
-- <__getitem__>: get a data point. | |
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. | |
""" | |
def __init__(self, opt): | |
"""Initialize the class; save the options in the class | |
Parameters: | |
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions | |
""" | |
self.opt = opt | |
# self.root = opt.dataroot | |
self.current_epoch = 0 | |
def modify_commandline_options(parser, is_train): | |
"""Add new dataset-specific options, and rewrite default values for existing options. | |
Parameters: | |
parser -- original option parser | |
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. | |
Returns: | |
the modified parser. | |
""" | |
return parser | |
def __len__(self): | |
"""Return the total number of images in the dataset.""" | |
return 0 | |
def __getitem__(self, index): | |
"""Return a data point and its metadata information. | |
Parameters: | |
index - - a random integer for data indexing | |
Returns: | |
a dictionary of data with their names. It ususally contains the data itself and its metadata information. | |
""" | |
pass | |
def get_transform(grayscale=False): | |
transform_list = [] | |
if grayscale: | |
transform_list.append(transforms.Grayscale(1)) | |
transform_list += [transforms.ToTensor()] | |
return transforms.Compose(transform_list) | |
def get_affine_mat(opt, size): | |
shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False | |
w, h = size | |
if 'shift' in opt.preprocess: | |
shift_pixs = int(opt.shift_pixs) | |
shift_x = random.randint(-shift_pixs, shift_pixs) | |
shift_y = random.randint(-shift_pixs, shift_pixs) | |
if 'scale' in opt.preprocess: | |
scale = 1 + opt.scale_delta * (2 * random.random() - 1) | |
if 'rot' in opt.preprocess: | |
rot_angle = opt.rot_angle * (2 * random.random() - 1) | |
rot_rad = -rot_angle * np.pi/180 | |
if 'flip' in opt.preprocess: | |
flip = random.random() > 0.5 | |
shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3]) | |
flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3]) | |
shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3]) | |
rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3]) | |
scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3]) | |
shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3]) | |
affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin | |
affine_inv = np.linalg.inv(affine) | |
return affine, affine_inv, flip | |
def apply_img_affine(img, affine_inv, method=Image.BICUBIC): | |
return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC) | |
def apply_lm_affine(landmark, affine, flip, size): | |
_, h = size | |
lm = landmark.copy() | |
lm[:, 1] = h - 1 - lm[:, 1] | |
lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1) | |
lm = lm @ np.transpose(affine) | |
lm[:, :2] = lm[:, :2] / lm[:, 2:] | |
lm = lm[:, :2] | |
lm[:, 1] = h - 1 - lm[:, 1] | |
if flip: | |
lm_ = lm.copy() | |
lm_[:17] = lm[16::-1] | |
lm_[17:22] = lm[26:21:-1] | |
lm_[22:27] = lm[21:16:-1] | |
lm_[31:36] = lm[35:30:-1] | |
lm_[36:40] = lm[45:41:-1] | |
lm_[40:42] = lm[47:45:-1] | |
lm_[42:46] = lm[39:35:-1] | |
lm_[46:48] = lm[41:39:-1] | |
lm_[48:55] = lm[54:47:-1] | |
lm_[55:60] = lm[59:54:-1] | |
lm_[60:65] = lm[64:59:-1] | |
lm_[65:68] = lm[67:64:-1] | |
lm = lm_ | |
return lm | |