Spaces:
Running
on
T4
Running
on
T4
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple | |
import warnings | |
import torch | |
import torch.nn.functional as F | |
import math | |
from transformers import AutoConfig, AutoModelForCausalLM | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel | |
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
class LlavaMPTConfig(MPTConfig): | |
model_type = "llava_mpt" | |
class LlavaMPTModel(LlavaMetaModel, MPTModel): | |
config_class = LlavaMPTConfig | |
def __init__(self, config: MPTConfig): | |
config.hidden_size = config.d_model | |
super(LlavaMPTModel, self).__init__(config) | |
def embed_tokens(self, x): | |
return self.wte(x) | |
class LlavaMPTForCausalLM(MPTForCausalLM, LlavaMetaForCausalLM): | |
config_class = LlavaMPTConfig | |
supports_gradient_checkpointing = True | |
def __init__(self, config): | |
super(MPTForCausalLM, self).__init__(config) | |
if not config.tie_word_embeddings: | |
raise ValueError('MPTForCausalLM only supports tied word embeddings') | |
self.transformer = LlavaMPTModel(config) | |
self.logit_scale = None | |
if config.logit_scale is not None: | |
logit_scale = config.logit_scale | |
if isinstance(logit_scale, str): | |
if logit_scale == 'inv_sqrt_d_model': | |
logit_scale = 1 / math.sqrt(config.d_model) | |
else: | |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") | |
self.logit_scale = logit_scale | |
def get_model(self): | |
return self.transformer | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, LlavaMPTModel): | |
module.gradient_checkpointing = value | |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None): | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) | |
outputs = self.transformer(input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) | |
# FIXME: this is a hack to fix the multiple gpu inference issue in https://github.com/haotian-liu/LLaVA/issues/338 | |
logits = F.linear(outputs.last_hidden_state.to(self.transformer.wte.weight.device), self.transformer.wte.weight) | |
if self.logit_scale is not None: | |
if self.logit_scale == 0: | |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') | |
logits *= self.logit_scale | |
loss = None | |
if labels is not None: | |
labels = torch.roll(labels, shifts=-1) | |
labels[:, -1] = -100 | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) | |
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states) | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
if inputs_embeds is not None: | |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet') | |
attention_mask = kwargs['attention_mask'].bool() | |
if attention_mask[:, -1].sum() != attention_mask.shape[0]: | |
raise NotImplementedError('MPT does not support generation with right padding.') | |
if self.transformer.attn_uses_sequence_id and self.training: | |
sequence_id = torch.zeros_like(input_ids[:1]) | |
else: | |
sequence_id = None | |
if past_key_values is not None: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if self.transformer.prefix_lm: | |
prefix_mask = torch.ones_like(attention_mask) | |
if kwargs.get('use_cache') == False: | |
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') | |
else: | |
prefix_mask = None | |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)} | |
AutoConfig.register("llava_mpt", LlavaMPTConfig) | |
AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM) | |