Upload folder using huggingface_hub
Browse files- app.py +185 -33
- data.py +130 -2
- styles.css +104 -0
- time_series.py +251 -0
app.py
CHANGED
|
@@ -7,6 +7,7 @@ from data import CIResults
|
|
| 7 |
from utils import logger
|
| 8 |
from summary_page import create_summary_page
|
| 9 |
from model_page import plot_model_stats
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
# Configure matplotlib to prevent memory warnings and set dark background
|
|
@@ -91,7 +92,47 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 91 |
description_text = get_description_text()
|
| 92 |
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
|
| 93 |
|
| 94 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
summary_button = gr.Button(
|
| 96 |
"summary\n📊",
|
| 97 |
variant="primary",
|
|
@@ -134,45 +175,64 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 134 |
|
| 135 |
# Main content area
|
| 136 |
with gr.Column(scale=4, elem_classes=["main-content"]):
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
label="",
|
| 152 |
format="png",
|
| 153 |
elem_classes=["plot-container"]
|
| 154 |
)
|
| 155 |
|
| 156 |
-
#
|
| 157 |
-
with gr.
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
container=False,
|
| 165 |
-
elem_classes=["failed-tests"]
|
| 166 |
-
)
|
| 167 |
-
with gr.Column(scale=1):
|
| 168 |
-
nvidia_failed_tests_output = gr.Textbox(
|
| 169 |
-
value="",
|
| 170 |
-
lines=8,
|
| 171 |
-
max_lines=8,
|
| 172 |
-
interactive=False,
|
| 173 |
-
container=False,
|
| 174 |
-
elem_classes=["failed-tests"]
|
| 175 |
-
)
|
| 176 |
|
| 177 |
# Set up click handlers for model buttons
|
| 178 |
for i, btn in enumerate(model_buttons):
|
|
@@ -293,6 +353,98 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 293 |
return "🔗 **CI Jobs:** *Error loading links*\n\n❓ **[FAQ](README.md)**"
|
| 294 |
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
# Auto-update CI links when the interface loads
|
| 297 |
demo.load(
|
| 298 |
fn=get_ci_links,
|
|
|
|
| 7 |
from utils import logger
|
| 8 |
from summary_page import create_summary_page
|
| 9 |
from model_page import plot_model_stats
|
| 10 |
+
from time_series import create_time_series_summary, create_model_time_series
|
| 11 |
|
| 12 |
|
| 13 |
# Configure matplotlib to prevent memory warnings and set dark background
|
|
|
|
| 92 |
description_text = get_description_text()
|
| 93 |
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
|
| 94 |
|
| 95 |
+
# View toggle buttons
|
| 96 |
+
with gr.Row(elem_classes=["view-toggle-row"]):
|
| 97 |
+
current_view_button = gr.Button(
|
| 98 |
+
"current\n📊",
|
| 99 |
+
variant="primary",
|
| 100 |
+
size="lg",
|
| 101 |
+
elem_classes=["view-toggle-button", "view-toggle-active"]
|
| 102 |
+
)
|
| 103 |
+
historical_view_button = gr.Button(
|
| 104 |
+
"history\n📈",
|
| 105 |
+
variant="secondary",
|
| 106 |
+
size="lg",
|
| 107 |
+
elem_classes=["view-toggle-button"]
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Date selection (initially hidden)
|
| 111 |
+
with gr.Column(visible=False, elem_classes=["date-selection"]) as date_selection:
|
| 112 |
+
gr.Markdown("**📅 Date Range Selection**", elem_classes=["date-header"])
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
start_date = gr.Dropdown(
|
| 116 |
+
choices=Ci_results.available_dates,
|
| 117 |
+
value=Ci_results.available_dates[0] if Ci_results.available_dates else None,
|
| 118 |
+
label="Start Date",
|
| 119 |
+
elem_classes=["date-dropdown"]
|
| 120 |
+
)
|
| 121 |
+
end_date = gr.Dropdown(
|
| 122 |
+
choices=Ci_results.available_dates,
|
| 123 |
+
value=Ci_results.available_dates[0] if Ci_results.available_dates else None,
|
| 124 |
+
label="End Date",
|
| 125 |
+
elem_classes=["date-dropdown"]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
load_historical_button = gr.Button(
|
| 129 |
+
"Load Historical Data",
|
| 130 |
+
variant="primary",
|
| 131 |
+
size="sm",
|
| 132 |
+
elem_classes=["load-historical-button"]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Summary button (for current view)
|
| 136 |
summary_button = gr.Button(
|
| 137 |
"summary\n📊",
|
| 138 |
variant="primary",
|
|
|
|
| 175 |
|
| 176 |
# Main content area
|
| 177 |
with gr.Column(scale=4, elem_classes=["main-content"]):
|
| 178 |
+
# Current view components
|
| 179 |
+
with gr.Column(visible=True, elem_classes=["current-view"]) as current_view:
|
| 180 |
+
# Summary display (default view)
|
| 181 |
+
summary_display = gr.Plot(
|
| 182 |
+
value=create_summary_page(Ci_results.df, Ci_results.available_models),
|
| 183 |
+
label="",
|
| 184 |
+
format="png",
|
| 185 |
+
elem_classes=["plot-container"],
|
| 186 |
+
visible=True
|
| 187 |
+
)
|
| 188 |
|
| 189 |
+
# Detailed view components (hidden by default)
|
| 190 |
+
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
|
| 191 |
+
# Create the plot output
|
| 192 |
+
plot_output = gr.Plot(
|
| 193 |
+
label="",
|
| 194 |
+
format="png",
|
| 195 |
+
elem_classes=["plot-container"]
|
| 196 |
+
)
|
| 197 |
|
| 198 |
+
# Create two separate failed tests displays in a row layout
|
| 199 |
+
with gr.Row():
|
| 200 |
+
with gr.Column(scale=1):
|
| 201 |
+
amd_failed_tests_output = gr.Textbox(
|
| 202 |
+
value="",
|
| 203 |
+
lines=8,
|
| 204 |
+
max_lines=8,
|
| 205 |
+
interactive=False,
|
| 206 |
+
container=False,
|
| 207 |
+
elem_classes=["failed-tests"]
|
| 208 |
+
)
|
| 209 |
+
with gr.Column(scale=1):
|
| 210 |
+
nvidia_failed_tests_output = gr.Textbox(
|
| 211 |
+
value="",
|
| 212 |
+
lines=8,
|
| 213 |
+
max_lines=8,
|
| 214 |
+
interactive=False,
|
| 215 |
+
container=False,
|
| 216 |
+
elem_classes=["failed-tests"]
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Historical view components (hidden by default)
|
| 220 |
+
with gr.Column(visible=False, elem_classes=["historical-view"]) as historical_view:
|
| 221 |
+
# Time-series summary display
|
| 222 |
+
time_series_summary_display = gr.Plot(
|
| 223 |
label="",
|
| 224 |
format="png",
|
| 225 |
elem_classes=["plot-container"]
|
| 226 |
)
|
| 227 |
|
| 228 |
+
# Time-series model view (hidden by default)
|
| 229 |
+
with gr.Column(visible=False, elem_classes=["time-series-detail-view"]) as time_series_detail_view:
|
| 230 |
+
# Create the time-series plot output
|
| 231 |
+
time_series_plot_output = gr.Plot(
|
| 232 |
+
label="",
|
| 233 |
+
format="png",
|
| 234 |
+
elem_classes=["plot-container"]
|
| 235 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
# Set up click handlers for model buttons
|
| 238 |
for i, btn in enumerate(model_buttons):
|
|
|
|
| 353 |
return "🔗 **CI Jobs:** *Error loading links*\n\n❓ **[FAQ](README.md)**"
|
| 354 |
|
| 355 |
|
| 356 |
+
# View toggle functionality
|
| 357 |
+
def toggle_to_current_view():
|
| 358 |
+
"""Switch to current view."""
|
| 359 |
+
return [
|
| 360 |
+
gr.update(visible=True), # current_view
|
| 361 |
+
gr.update(visible=False), # historical_view
|
| 362 |
+
gr.update(visible=False), # date_selection
|
| 363 |
+
gr.update(visible=True), # summary_button
|
| 364 |
+
gr.update(variant="primary", elem_classes=["view-toggle-button", "view-toggle-active"]), # current_view_button
|
| 365 |
+
gr.update(variant="secondary", elem_classes=["view-toggle-button"]) # historical_view_button
|
| 366 |
+
]
|
| 367 |
+
|
| 368 |
+
def toggle_to_historical_view():
|
| 369 |
+
"""Switch to historical view."""
|
| 370 |
+
return [
|
| 371 |
+
gr.update(visible=False), # current_view
|
| 372 |
+
gr.update(visible=True), # historical_view
|
| 373 |
+
gr.update(visible=True), # date_selection
|
| 374 |
+
gr.update(visible=False), # summary_button
|
| 375 |
+
gr.update(variant="secondary", elem_classes=["view-toggle-button"]), # current_view_button
|
| 376 |
+
gr.update(variant="primary", elem_classes=["view-toggle-button", "view-toggle-active"]) # historical_view_button
|
| 377 |
+
]
|
| 378 |
+
|
| 379 |
+
current_view_button.click(
|
| 380 |
+
fn=toggle_to_current_view,
|
| 381 |
+
outputs=[current_view, historical_view, date_selection, summary_button, current_view_button, historical_view_button]
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
historical_view_button.click(
|
| 385 |
+
fn=toggle_to_historical_view,
|
| 386 |
+
outputs=[current_view, historical_view, date_selection, summary_button, current_view_button, historical_view_button]
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Historical data loading functionality
|
| 390 |
+
def load_historical_data(start_date, end_date):
|
| 391 |
+
"""Load and display historical data."""
|
| 392 |
+
if not start_date or not end_date:
|
| 393 |
+
return gr.update(), "Please select both start and end dates."
|
| 394 |
+
|
| 395 |
+
try:
|
| 396 |
+
Ci_results.load_historical_data(start_date, end_date)
|
| 397 |
+
if Ci_results.historical_df.empty:
|
| 398 |
+
return gr.update(), "No historical data found for the selected date range."
|
| 399 |
+
|
| 400 |
+
# Create time-series summary plot
|
| 401 |
+
time_series_plot = create_time_series_summary(Ci_results.historical_df)
|
| 402 |
+
return time_series_plot, f"Loaded historical data from {start_date} to {end_date}"
|
| 403 |
+
except Exception as e:
|
| 404 |
+
logger.error(f"Error loading historical data: {e}")
|
| 405 |
+
return gr.update(), f"Error loading historical data: {str(e)}"
|
| 406 |
+
|
| 407 |
+
load_historical_button.click(
|
| 408 |
+
fn=load_historical_data,
|
| 409 |
+
inputs=[start_date, end_date],
|
| 410 |
+
outputs=[time_series_summary_display, description_display]
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
# Time-series model selection functionality
|
| 414 |
+
def show_time_series_model(selected_model):
|
| 415 |
+
"""Show time-series view for a specific model."""
|
| 416 |
+
if Ci_results.historical_df.empty:
|
| 417 |
+
return gr.update(), "No historical data loaded. Please load historical data first."
|
| 418 |
+
|
| 419 |
+
try:
|
| 420 |
+
time_series_plot = create_model_time_series(Ci_results.historical_df, selected_model)
|
| 421 |
+
return time_series_plot
|
| 422 |
+
except Exception as e:
|
| 423 |
+
logger.error(f"Error creating time-series for model {selected_model}: {e}")
|
| 424 |
+
return gr.update()
|
| 425 |
+
|
| 426 |
+
# Update model button handlers to work with both views
|
| 427 |
+
for i, btn in enumerate(model_buttons):
|
| 428 |
+
model_name = model_choices[i]
|
| 429 |
+
|
| 430 |
+
# Current view handler (existing functionality)
|
| 431 |
+
btn.click(
|
| 432 |
+
fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
|
| 433 |
+
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
|
| 434 |
+
).then(
|
| 435 |
+
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
| 436 |
+
outputs=[summary_display, detail_view]
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
# Historical view handler (new functionality)
|
| 440 |
+
btn.click(
|
| 441 |
+
fn=lambda selected_model=model_name: show_time_series_model(selected_model),
|
| 442 |
+
outputs=[time_series_plot_output]
|
| 443 |
+
).then(
|
| 444 |
+
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
| 445 |
+
outputs=[time_series_summary_display, time_series_detail_view]
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
# Auto-update CI links when the interface loads
|
| 449 |
demo.load(
|
| 450 |
fn=get_ci_links,
|
data.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
from huggingface_hub import HfFileSystem
|
| 2 |
import pandas as pd
|
| 3 |
from utils import logger
|
| 4 |
-
from datetime import datetime
|
| 5 |
import threading
|
| 6 |
import traceback
|
| 7 |
import json
|
| 8 |
import re
|
|
|
|
| 9 |
|
| 10 |
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
|
| 11 |
fs = HfFileSystem()
|
|
@@ -92,12 +93,118 @@ def infer_latest_update_msg(date_df_amd: str, date_df_nvidia: str) -> str:
|
|
| 92 |
|
| 93 |
def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]:
|
| 94 |
df_upload_date = log_dataframe_link(json_path)
|
| 95 |
-
df = pd.read_json(json_path, orient="index"
|
| 96 |
df.index.name = "model_name"
|
| 97 |
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
|
| 98 |
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
|
| 99 |
return df, df_upload_date
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
def get_distant_data() -> tuple[pd.DataFrame, str]:
|
| 102 |
# Retrieve AMD dataframe
|
| 103 |
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
|
|
@@ -184,6 +291,8 @@ class CIResults:
|
|
| 184 |
self.df = pd.DataFrame()
|
| 185 |
self.available_models = []
|
| 186 |
self.latest_update_msg = ""
|
|
|
|
|
|
|
| 187 |
|
| 188 |
def load_data(self) -> None:
|
| 189 |
"""Load data from the data source."""
|
|
@@ -203,6 +312,15 @@ class CIResults:
|
|
| 203 |
logger.error("\n".join(error_msg))
|
| 204 |
new_df, latest_update_msg = get_sample_data()
|
| 205 |
self.latest_update_msg = latest_update_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
# Update attributes
|
| 207 |
self.df = new_df
|
| 208 |
self.available_models = new_df.index.tolist()
|
|
@@ -223,6 +341,16 @@ class CIResults:
|
|
| 223 |
msg[model][col] = value
|
| 224 |
logger.info(json.dumps(msg, indent=4))
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
def schedule_data_reload(self):
|
| 227 |
"""Schedule the next data reload."""
|
| 228 |
def reload_data():
|
|
|
|
| 1 |
from huggingface_hub import HfFileSystem
|
| 2 |
import pandas as pd
|
| 3 |
from utils import logger
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
import threading
|
| 6 |
import traceback
|
| 7 |
import json
|
| 8 |
import re
|
| 9 |
+
from typing import List, Tuple, Optional
|
| 10 |
|
| 11 |
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
|
| 12 |
fs = HfFileSystem()
|
|
|
|
| 93 |
|
| 94 |
def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]:
|
| 95 |
df_upload_date = log_dataframe_link(json_path)
|
| 96 |
+
df = pd.read_json(json_path, orient="index")
|
| 97 |
df.index.name = "model_name"
|
| 98 |
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
|
| 99 |
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
|
| 100 |
return df, df_upload_date
|
| 101 |
|
| 102 |
+
def get_available_dates() -> List[str]:
|
| 103 |
+
"""Get list of available dates from both AMD and NVIDIA datasets."""
|
| 104 |
+
try:
|
| 105 |
+
# Get AMD dates
|
| 106 |
+
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
|
| 107 |
+
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
|
| 108 |
+
|
| 109 |
+
# Get NVIDIA dates
|
| 110 |
+
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
|
| 111 |
+
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
|
| 112 |
+
|
| 113 |
+
# Extract dates from file paths
|
| 114 |
+
amd_dates = set()
|
| 115 |
+
for file_path in files_amd:
|
| 116 |
+
pattern = r'transformers_daily_ci(.*?)/(\d{4}-\d{2}-\d{2})'
|
| 117 |
+
match = re.search(pattern, file_path)
|
| 118 |
+
if match:
|
| 119 |
+
amd_dates.add(match.group(2))
|
| 120 |
+
|
| 121 |
+
nvidia_dates = set()
|
| 122 |
+
for file_path in files_nvidia:
|
| 123 |
+
pattern = r'transformers_daily_ci/(\d{4}-\d{2}-\d{2})'
|
| 124 |
+
match = re.search(pattern, file_path)
|
| 125 |
+
if match:
|
| 126 |
+
nvidia_dates.add(match.group(1))
|
| 127 |
+
|
| 128 |
+
# Return intersection of both datasets (dates where both have data)
|
| 129 |
+
common_dates = sorted(amd_dates.intersection(nvidia_dates), reverse=True)
|
| 130 |
+
return common_dates[:30] # Limit to last 30 days for performance
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
logger.error(f"Error getting available dates: {e}")
|
| 134 |
+
# Return sample dates for fallback
|
| 135 |
+
today = datetime.now()
|
| 136 |
+
return [(today - timedelta(days=i)).strftime("%Y-%m-%d") for i in range(7)]
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def get_data_for_date(target_date: str) -> tuple[pd.DataFrame, str]:
|
| 140 |
+
"""Get data for a specific date."""
|
| 141 |
+
try:
|
| 142 |
+
# Construct paths for specific date
|
| 143 |
+
amd_src = f"hf://datasets/optimum-amd/transformers_daily_ci/**/runs/{target_date}/**/ci_results_run_models_gpu/model_results.json"
|
| 144 |
+
nvidia_src = f"hf://datasets/hf-internal-testing/transformers_daily_ci/{target_date}/ci_results_run_models_gpu/model_results.json"
|
| 145 |
+
|
| 146 |
+
# Find matching files
|
| 147 |
+
files_amd = fs.glob(amd_src, refresh=True)
|
| 148 |
+
files_nvidia = fs.glob(nvidia_src, refresh=True)
|
| 149 |
+
|
| 150 |
+
if not files_amd or not files_nvidia:
|
| 151 |
+
raise FileNotFoundError(f"No data found for date {target_date}")
|
| 152 |
+
|
| 153 |
+
# Use the first matching file for each
|
| 154 |
+
df_amd, _ = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
|
| 155 |
+
df_nvidia, _ = read_one_dataframe(f"https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/{target_date}/ci_results_run_models_gpu/model_results.json", "nvidia")
|
| 156 |
+
|
| 157 |
+
# Join both dataframes
|
| 158 |
+
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
|
| 159 |
+
joined = joined[KEYS_TO_KEEP]
|
| 160 |
+
joined.index = joined.index.str.replace("^models_", "", regex=True)
|
| 161 |
+
|
| 162 |
+
# Filter out all but important models
|
| 163 |
+
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
|
| 164 |
+
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
|
| 165 |
+
|
| 166 |
+
return filtered_joined, target_date
|
| 167 |
+
|
| 168 |
+
except Exception as e:
|
| 169 |
+
logger.error(f"Error getting data for date {target_date}: {e}")
|
| 170 |
+
# Fallback to sample data
|
| 171 |
+
return get_sample_data()
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def get_historical_data(start_date: str, end_date: str) -> pd.DataFrame:
|
| 175 |
+
"""Get historical data for a date range."""
|
| 176 |
+
try:
|
| 177 |
+
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
|
| 178 |
+
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
|
| 179 |
+
|
| 180 |
+
historical_data = []
|
| 181 |
+
current_dt = start_dt
|
| 182 |
+
|
| 183 |
+
while current_dt <= end_dt:
|
| 184 |
+
date_str = current_dt.strftime("%Y-%m-%d")
|
| 185 |
+
try:
|
| 186 |
+
df, _ = get_data_for_date(date_str)
|
| 187 |
+
df['date'] = date_str
|
| 188 |
+
historical_data.append(df)
|
| 189 |
+
logger.info(f"Loaded data for {date_str}")
|
| 190 |
+
except Exception as e:
|
| 191 |
+
logger.warning(f"Could not load data for {date_str}: {e}")
|
| 192 |
+
|
| 193 |
+
current_dt += timedelta(days=1)
|
| 194 |
+
|
| 195 |
+
if not historical_data:
|
| 196 |
+
raise ValueError("No historical data found for the specified range")
|
| 197 |
+
|
| 198 |
+
# Combine all dataframes
|
| 199 |
+
combined_df = pd.concat(historical_data, ignore_index=False)
|
| 200 |
+
return combined_df
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
logger.error(f"Error getting historical data: {e}")
|
| 204 |
+
# Return empty dataframe with proper structure
|
| 205 |
+
return pd.DataFrame()
|
| 206 |
+
|
| 207 |
+
|
| 208 |
def get_distant_data() -> tuple[pd.DataFrame, str]:
|
| 209 |
# Retrieve AMD dataframe
|
| 210 |
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
|
|
|
|
| 291 |
self.df = pd.DataFrame()
|
| 292 |
self.available_models = []
|
| 293 |
self.latest_update_msg = ""
|
| 294 |
+
self.available_dates = []
|
| 295 |
+
self.historical_df = pd.DataFrame()
|
| 296 |
|
| 297 |
def load_data(self) -> None:
|
| 298 |
"""Load data from the data source."""
|
|
|
|
| 312 |
logger.error("\n".join(error_msg))
|
| 313 |
new_df, latest_update_msg = get_sample_data()
|
| 314 |
self.latest_update_msg = latest_update_msg
|
| 315 |
+
|
| 316 |
+
# Load available dates
|
| 317 |
+
try:
|
| 318 |
+
self.available_dates = get_available_dates()
|
| 319 |
+
logger.info(f"Available dates: {len(self.available_dates)} dates")
|
| 320 |
+
except Exception as e:
|
| 321 |
+
logger.error(f"Error loading available dates: {e}")
|
| 322 |
+
self.available_dates = []
|
| 323 |
+
|
| 324 |
# Update attributes
|
| 325 |
self.df = new_df
|
| 326 |
self.available_models = new_df.index.tolist()
|
|
|
|
| 341 |
msg[model][col] = value
|
| 342 |
logger.info(json.dumps(msg, indent=4))
|
| 343 |
|
| 344 |
+
def load_historical_data(self, start_date: str, end_date: str) -> None:
|
| 345 |
+
"""Load historical data for a date range."""
|
| 346 |
+
try:
|
| 347 |
+
logger.info(f"Loading historical data from {start_date} to {end_date}")
|
| 348 |
+
self.historical_df = get_historical_data(start_date, end_date)
|
| 349 |
+
logger.info(f"Historical data loaded: {len(self.historical_df)} records")
|
| 350 |
+
except Exception as e:
|
| 351 |
+
logger.error(f"Error loading historical data: {e}")
|
| 352 |
+
self.historical_df = pd.DataFrame()
|
| 353 |
+
|
| 354 |
def schedule_data_reload(self):
|
| 355 |
"""Schedule the next data reload."""
|
| 356 |
def reload_data():
|
styles.css
CHANGED
|
@@ -667,3 +667,107 @@ h1, h2, h3, p, .markdown {
|
|
| 667 |
100% { scroll-behavior: auto; }
|
| 668 |
}
|
| 669 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
100% { scroll-behavior: auto; }
|
| 668 |
}
|
| 669 |
|
| 670 |
+
/* View toggle buttons */
|
| 671 |
+
.view-toggle-row {
|
| 672 |
+
display: flex !important;
|
| 673 |
+
gap: 5px !important;
|
| 674 |
+
margin-bottom: 15px !important;
|
| 675 |
+
}
|
| 676 |
+
|
| 677 |
+
.view-toggle-button {
|
| 678 |
+
flex: 1 !important;
|
| 679 |
+
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
|
| 680 |
+
color: white !important;
|
| 681 |
+
border: 1px solid #333 !important;
|
| 682 |
+
border-radius: 5px !important;
|
| 683 |
+
padding: 8px 6px !important;
|
| 684 |
+
transition: all 0.3s ease !important;
|
| 685 |
+
font-weight: 600 !important;
|
| 686 |
+
font-size: 12px !important;
|
| 687 |
+
text-transform: uppercase !important;
|
| 688 |
+
letter-spacing: 0.3px !important;
|
| 689 |
+
font-family: monospace !important;
|
| 690 |
+
height: 50px !important;
|
| 691 |
+
display: flex !important;
|
| 692 |
+
flex-direction: column !important;
|
| 693 |
+
justify-content: center !important;
|
| 694 |
+
align-items: center !important;
|
| 695 |
+
line-height: 1.2 !important;
|
| 696 |
+
cursor: pointer !important;
|
| 697 |
+
}
|
| 698 |
+
|
| 699 |
+
.view-toggle-button:hover {
|
| 700 |
+
background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
|
| 701 |
+
border-color: #555 !important;
|
| 702 |
+
}
|
| 703 |
+
|
| 704 |
+
.view-toggle-active {
|
| 705 |
+
background: linear-gradient(135deg, #4a4a4a, #3e3e3e) !important;
|
| 706 |
+
border: 2px solid #555555 !important;
|
| 707 |
+
box-shadow:
|
| 708 |
+
0 4px 15px rgba(0, 0, 0, 0.3),
|
| 709 |
+
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
| 710 |
+
}
|
| 711 |
+
|
| 712 |
+
/* Date selection styling */
|
| 713 |
+
.date-selection {
|
| 714 |
+
background: linear-gradient(145deg, #0f0f0f, #1a1a1a) !important;
|
| 715 |
+
border: 1px solid #333 !important;
|
| 716 |
+
border-radius: 8px !important;
|
| 717 |
+
padding: 15px !important;
|
| 718 |
+
margin-bottom: 15px !important;
|
| 719 |
+
}
|
| 720 |
+
|
| 721 |
+
.date-header {
|
| 722 |
+
margin-bottom: 10px !important;
|
| 723 |
+
text-align: center !important;
|
| 724 |
+
color: #74b9ff !important;
|
| 725 |
+
font-family: monospace !important;
|
| 726 |
+
font-size: 14px !important;
|
| 727 |
+
}
|
| 728 |
+
|
| 729 |
+
.date-dropdown {
|
| 730 |
+
background-color: #222222 !important;
|
| 731 |
+
color: white !important;
|
| 732 |
+
border: 1px solid #444444 !important;
|
| 733 |
+
border-radius: 5px !important;
|
| 734 |
+
font-family: monospace !important;
|
| 735 |
+
font-size: 12px !important;
|
| 736 |
+
}
|
| 737 |
+
|
| 738 |
+
.date-dropdown .gr-dropdown {
|
| 739 |
+
background-color: #222222 !important;
|
| 740 |
+
color: white !important;
|
| 741 |
+
border: 1px solid #444444 !important;
|
| 742 |
+
}
|
| 743 |
+
|
| 744 |
+
.load-historical-button {
|
| 745 |
+
background: linear-gradient(135deg, #2d5aa0, #1e3f73) !important;
|
| 746 |
+
color: white !important;
|
| 747 |
+
border: 1px solid #3a6bc7 !important;
|
| 748 |
+
border-radius: 5px !important;
|
| 749 |
+
padding: 8px 12px !important;
|
| 750 |
+
transition: all 0.3s ease !important;
|
| 751 |
+
font-weight: 500 !important;
|
| 752 |
+
font-size: 12px !important;
|
| 753 |
+
text-transform: uppercase !important;
|
| 754 |
+
letter-spacing: 0.1px !important;
|
| 755 |
+
font-family: monospace !important;
|
| 756 |
+
width: 100% !important;
|
| 757 |
+
margin-top: 10px !important;
|
| 758 |
+
}
|
| 759 |
+
|
| 760 |
+
.load-historical-button:hover {
|
| 761 |
+
background: linear-gradient(135deg, #3a6bc7, #2d5aa0) !important;
|
| 762 |
+
border-color: #4a7bd9 !important;
|
| 763 |
+
}
|
| 764 |
+
|
| 765 |
+
/* Historical view styling */
|
| 766 |
+
.historical-view {
|
| 767 |
+
background-color: #000000 !important;
|
| 768 |
+
}
|
| 769 |
+
|
| 770 |
+
.time-series-detail-view {
|
| 771 |
+
background-color: #000000 !important;
|
| 772 |
+
}
|
| 773 |
+
|
time_series.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from data import extract_model_data
|
| 6 |
+
|
| 7 |
+
# Colors matching the existing theme
|
| 8 |
+
COLORS = {
|
| 9 |
+
'passed': '#4CAF50',
|
| 10 |
+
'failed': '#E53E3E',
|
| 11 |
+
'skipped': '#FFD54F',
|
| 12 |
+
'error': '#8B0000'
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
# Figure dimensions
|
| 16 |
+
FIGURE_WIDTH = 20
|
| 17 |
+
FIGURE_HEIGHT = 12
|
| 18 |
+
|
| 19 |
+
# Styling constants
|
| 20 |
+
BLACK = '#000000'
|
| 21 |
+
LABEL_COLOR = '#CCCCCC'
|
| 22 |
+
TITLE_COLOR = '#FFFFFF'
|
| 23 |
+
GRID_COLOR = '#333333'
|
| 24 |
+
|
| 25 |
+
# Font sizes
|
| 26 |
+
TITLE_FONT_SIZE = 24
|
| 27 |
+
LABEL_FONT_SIZE = 14
|
| 28 |
+
LEGEND_FONT_SIZE = 12
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
| 32 |
+
"""Create time-series visualization for overall failure rates over time."""
|
| 33 |
+
if historical_df.empty or 'date' not in historical_df.columns:
|
| 34 |
+
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 35 |
+
ax.set_facecolor(BLACK)
|
| 36 |
+
ax.text(0.5, 0.5, 'No historical data available',
|
| 37 |
+
horizontalalignment='center', verticalalignment='center',
|
| 38 |
+
transform=ax.transAxes, fontsize=20, color='#888888',
|
| 39 |
+
fontfamily='monospace', weight='normal')
|
| 40 |
+
ax.axis('off')
|
| 41 |
+
return fig
|
| 42 |
+
|
| 43 |
+
# Convert date column to datetime
|
| 44 |
+
historical_df['date_dt'] = pd.to_datetime(historical_df['date'])
|
| 45 |
+
historical_df = historical_df.sort_values('date_dt')
|
| 46 |
+
|
| 47 |
+
# Group by date and calculate overall statistics
|
| 48 |
+
daily_stats = []
|
| 49 |
+
dates = []
|
| 50 |
+
|
| 51 |
+
for date in historical_df['date_dt'].unique():
|
| 52 |
+
date_data = historical_df[historical_df['date_dt'] == date]
|
| 53 |
+
|
| 54 |
+
total_amd_passed = 0
|
| 55 |
+
total_amd_failed = 0
|
| 56 |
+
total_amd_skipped = 0
|
| 57 |
+
total_nvidia_passed = 0
|
| 58 |
+
total_nvidia_failed = 0
|
| 59 |
+
total_nvidia_skipped = 0
|
| 60 |
+
|
| 61 |
+
for _, row in date_data.iterrows():
|
| 62 |
+
amd_stats, nvidia_stats = extract_model_data(row)[:2]
|
| 63 |
+
|
| 64 |
+
total_amd_passed += amd_stats['passed']
|
| 65 |
+
total_amd_failed += amd_stats['failed']
|
| 66 |
+
total_amd_skipped += amd_stats['skipped']
|
| 67 |
+
|
| 68 |
+
total_nvidia_passed += nvidia_stats['passed']
|
| 69 |
+
total_nvidia_failed += nvidia_stats['failed']
|
| 70 |
+
total_nvidia_skipped += nvidia_stats['skipped']
|
| 71 |
+
|
| 72 |
+
# Calculate failure rates
|
| 73 |
+
amd_total = total_amd_passed + total_amd_failed
|
| 74 |
+
nvidia_total = total_nvidia_passed + total_nvidia_failed
|
| 75 |
+
|
| 76 |
+
amd_failure_rate = (total_amd_failed / amd_total * 100) if amd_total > 0 else 0
|
| 77 |
+
nvidia_failure_rate = (total_nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
|
| 78 |
+
|
| 79 |
+
daily_stats.append({
|
| 80 |
+
'amd_failure_rate': amd_failure_rate,
|
| 81 |
+
'nvidia_failure_rate': nvidia_failure_rate,
|
| 82 |
+
'amd_passed': total_amd_passed,
|
| 83 |
+
'amd_failed': total_amd_failed,
|
| 84 |
+
'amd_skipped': total_amd_skipped,
|
| 85 |
+
'nvidia_passed': total_nvidia_passed,
|
| 86 |
+
'nvidia_failed': total_nvidia_failed,
|
| 87 |
+
'nvidia_skipped': total_nvidia_skipped
|
| 88 |
+
})
|
| 89 |
+
dates.append(date)
|
| 90 |
+
|
| 91 |
+
# Create the plot
|
| 92 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 93 |
+
ax1.set_facecolor(BLACK)
|
| 94 |
+
ax2.set_facecolor(BLACK)
|
| 95 |
+
|
| 96 |
+
# Plot 1: Failure rates over time
|
| 97 |
+
dates_array = np.array(dates)
|
| 98 |
+
amd_rates = [stat['amd_failure_rate'] for stat in daily_stats]
|
| 99 |
+
nvidia_rates = [stat['nvidia_failure_rate'] for stat in daily_stats]
|
| 100 |
+
|
| 101 |
+
ax1.plot(dates_array, amd_rates, color='#FF6B6B', linewidth=3, label='AMD', marker='o', markersize=6)
|
| 102 |
+
ax1.plot(dates_array, nvidia_rates, color='#4ECDC4', linewidth=3, label='NVIDIA', marker='s', markersize=6)
|
| 103 |
+
|
| 104 |
+
ax1.set_title('Overall Failure Rates Over Time', fontsize=TITLE_FONT_SIZE, color=TITLE_COLOR,
|
| 105 |
+
fontfamily='monospace', fontweight='bold', pad=20)
|
| 106 |
+
ax1.set_ylabel('Failure Rate (%)', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 107 |
+
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 108 |
+
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 109 |
+
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 110 |
+
|
| 111 |
+
# Format x-axis
|
| 112 |
+
ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE)
|
| 113 |
+
ax1.xaxis.label.set_color(LABEL_COLOR)
|
| 114 |
+
ax1.yaxis.label.set_color(LABEL_COLOR)
|
| 115 |
+
|
| 116 |
+
# Plot 2: Test counts over time (stacked area chart)
|
| 117 |
+
amd_passed = [stat['amd_passed'] for stat in daily_stats]
|
| 118 |
+
amd_failed = [stat['amd_failed'] for stat in daily_stats]
|
| 119 |
+
amd_skipped = [stat['amd_skipped'] for stat in daily_stats]
|
| 120 |
+
|
| 121 |
+
nvidia_passed = [stat['nvidia_passed'] for stat in daily_stats]
|
| 122 |
+
nvidia_failed = [stat['nvidia_failed'] for stat in daily_stats]
|
| 123 |
+
nvidia_skipped = [stat['nvidia_skipped'] for stat in daily_stats]
|
| 124 |
+
|
| 125 |
+
# AMD stacked area
|
| 126 |
+
ax2.fill_between(dates_array, 0, amd_passed, color=COLORS['passed'], alpha=0.7, label='AMD Passed')
|
| 127 |
+
ax2.fill_between(dates_array, amd_passed, np.array(amd_passed) + np.array(amd_failed),
|
| 128 |
+
color=COLORS['failed'], alpha=0.7, label='AMD Failed')
|
| 129 |
+
ax2.fill_between(dates_array, np.array(amd_passed) + np.array(amd_failed),
|
| 130 |
+
np.array(amd_passed) + np.array(amd_failed) + np.array(amd_skipped),
|
| 131 |
+
color=COLORS['skipped'], alpha=0.7, label='AMD Skipped')
|
| 132 |
+
|
| 133 |
+
# NVIDIA stacked area (offset to the right)
|
| 134 |
+
offset = 0.4 # Offset in days
|
| 135 |
+
dates_offset = dates_array + pd.Timedelta(days=offset)
|
| 136 |
+
|
| 137 |
+
ax2.fill_between(dates_offset, 0, nvidia_passed, color=COLORS['passed'], alpha=0.4, label='NVIDIA Passed')
|
| 138 |
+
ax2.fill_between(dates_offset, nvidia_passed, np.array(nvidia_passed) + np.array(nvidia_failed),
|
| 139 |
+
color=COLORS['failed'], alpha=0.4, label='NVIDIA Failed')
|
| 140 |
+
ax2.fill_between(dates_offset, np.array(nvidia_passed) + np.array(nvidia_failed),
|
| 141 |
+
np.array(nvidia_passed) + np.array(nvidia_failed) + np.array(nvidia_skipped),
|
| 142 |
+
color=COLORS['skipped'], alpha=0.4, label='NVIDIA Skipped')
|
| 143 |
+
|
| 144 |
+
ax2.set_title('Test Results Over Time (Stacked)', fontsize=TITLE_FONT_SIZE, color=TITLE_COLOR,
|
| 145 |
+
fontfamily='monospace', fontweight='bold', pad=20)
|
| 146 |
+
ax2.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 147 |
+
ax2.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 148 |
+
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 149 |
+
ax2.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 150 |
+
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 151 |
+
|
| 152 |
+
# Format x-axis
|
| 153 |
+
ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE)
|
| 154 |
+
ax2.xaxis.label.set_color(LABEL_COLOR)
|
| 155 |
+
ax2.yaxis.label.set_color(LABEL_COLOR)
|
| 156 |
+
|
| 157 |
+
# Rotate x-axis labels for better readability
|
| 158 |
+
for ax in [ax1, ax2]:
|
| 159 |
+
ax.tick_params(axis='x', rotation=45)
|
| 160 |
+
|
| 161 |
+
plt.tight_layout()
|
| 162 |
+
return fig
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> plt.Figure:
|
| 166 |
+
"""Create time-series visualization for a specific model."""
|
| 167 |
+
if historical_df.empty or 'date' not in historical_df.columns:
|
| 168 |
+
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 169 |
+
ax.set_facecolor(BLACK)
|
| 170 |
+
ax.text(0.5, 0.5, f'No historical data available for {model_name}',
|
| 171 |
+
horizontalalignment='center', verticalalignment='center',
|
| 172 |
+
transform=ax.transAxes, fontsize=20, color='#888888',
|
| 173 |
+
fontfamily='monospace', weight='normal')
|
| 174 |
+
ax.axis('off')
|
| 175 |
+
return fig
|
| 176 |
+
|
| 177 |
+
# Filter data for the specific model
|
| 178 |
+
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 179 |
+
|
| 180 |
+
if model_data.empty:
|
| 181 |
+
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 182 |
+
ax.set_facecolor(BLACK)
|
| 183 |
+
ax.text(0.5, 0.5, f'No data found for model: {model_name}',
|
| 184 |
+
horizontalalignment='center', verticalalignment='center',
|
| 185 |
+
transform=ax.transAxes, fontsize=20, color='#888888',
|
| 186 |
+
fontfamily='monospace', weight='normal')
|
| 187 |
+
ax.axis('off')
|
| 188 |
+
return fig
|
| 189 |
+
|
| 190 |
+
# Convert date column to datetime and sort
|
| 191 |
+
model_data = model_data.copy()
|
| 192 |
+
model_data['date_dt'] = pd.to_datetime(model_data['date'])
|
| 193 |
+
model_data = model_data.sort_values('date_dt')
|
| 194 |
+
|
| 195 |
+
# Extract statistics for each date
|
| 196 |
+
dates = model_data['date_dt'].values
|
| 197 |
+
amd_stats_list = []
|
| 198 |
+
nvidia_stats_list = []
|
| 199 |
+
|
| 200 |
+
for _, row in model_data.iterrows():
|
| 201 |
+
amd_stats, nvidia_stats = extract_model_data(row)[:2]
|
| 202 |
+
amd_stats_list.append(amd_stats)
|
| 203 |
+
nvidia_stats_list.append(nvidia_stats)
|
| 204 |
+
|
| 205 |
+
# Create the plot
|
| 206 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 207 |
+
ax1.set_facecolor(BLACK)
|
| 208 |
+
ax2.set_facecolor(BLACK)
|
| 209 |
+
|
| 210 |
+
# Plot 1: AMD results over time
|
| 211 |
+
amd_passed = [stats['passed'] for stats in amd_stats_list]
|
| 212 |
+
amd_failed = [stats['failed'] for stats in amd_stats_list]
|
| 213 |
+
amd_skipped = [stats['skipped'] for stats in amd_stats_list]
|
| 214 |
+
|
| 215 |
+
ax1.plot(dates, amd_passed, color=COLORS['passed'], linewidth=3, label='Passed', marker='o', markersize=6)
|
| 216 |
+
ax1.plot(dates, amd_failed, color=COLORS['failed'], linewidth=3, label='Failed', marker='s', markersize=6)
|
| 217 |
+
ax1.plot(dates, amd_skipped, color=COLORS['skipped'], linewidth=3, label='Skipped', marker='^', markersize=6)
|
| 218 |
+
|
| 219 |
+
ax1.set_title(f'{model_name.upper()} - AMD Results Over Time', fontsize=TITLE_FONT_SIZE, color=TITLE_COLOR,
|
| 220 |
+
fontfamily='monospace', fontweight='bold', pad=20)
|
| 221 |
+
ax1.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 222 |
+
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 223 |
+
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 224 |
+
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 225 |
+
|
| 226 |
+
# Plot 2: NVIDIA results over time
|
| 227 |
+
nvidia_passed = [stats['passed'] for stats in nvidia_stats_list]
|
| 228 |
+
nvidia_failed = [stats['failed'] for stats in nvidia_stats_list]
|
| 229 |
+
nvidia_skipped = [stats['skipped'] for stats in nvidia_stats_list]
|
| 230 |
+
|
| 231 |
+
ax2.plot(dates, nvidia_passed, color=COLORS['passed'], linewidth=3, label='Passed', marker='o', markersize=6)
|
| 232 |
+
ax2.plot(dates, nvidia_failed, color=COLORS['failed'], linewidth=3, label='Failed', marker='s', markersize=6)
|
| 233 |
+
ax2.plot(dates, nvidia_skipped, color=COLORS['skipped'], linewidth=3, label='Skipped', marker='^', markersize=6)
|
| 234 |
+
|
| 235 |
+
ax2.set_title(f'{model_name.upper()} - NVIDIA Results Over Time', fontsize=TITLE_FONT_SIZE, color=TITLE_COLOR,
|
| 236 |
+
fontfamily='monospace', fontweight='bold', pad=20)
|
| 237 |
+
ax2.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 238 |
+
ax2.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 239 |
+
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 240 |
+
ax2.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 241 |
+
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 242 |
+
|
| 243 |
+
# Format axes
|
| 244 |
+
for ax in [ax1, ax2]:
|
| 245 |
+
ax.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE)
|
| 246 |
+
ax.xaxis.label.set_color(LABEL_COLOR)
|
| 247 |
+
ax.yaxis.label.set_color(LABEL_COLOR)
|
| 248 |
+
ax.tick_params(axis='x', rotation=45)
|
| 249 |
+
|
| 250 |
+
plt.tight_layout()
|
| 251 |
+
return fig
|