Abdennacer Badaoui
commited on
Commit
·
27f5ac2
1
Parent(s):
84cf73f
first seen date of a failing test
Browse files- app.py +2 -2
- data.py +53 -2
- model_page.py +34 -12
app.py
CHANGED
|
@@ -490,7 +490,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css(), js=js_func)
|
|
| 490 |
else:
|
| 491 |
# Switch to current mode: show model if selected; otherwise summary
|
| 492 |
if last_selected_model and Ci_results.df is not None and not Ci_results.df.empty and last_selected_model in Ci_results.df.index:
|
| 493 |
-
fig, amd_txt, nvidia_txt = plot_model_stats(Ci_results.df, last_selected_model)
|
| 494 |
return (
|
| 495 |
gr.update(visible=True), # current_view
|
| 496 |
gr.update(visible=False), # historical_view
|
|
@@ -577,7 +577,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css(), js=js_func)
|
|
| 577 |
gr.update(visible=True), # time_series_detail_view
|
| 578 |
selected_model, True) # selected_model_state, in_model_view_state
|
| 579 |
else:
|
| 580 |
-
fig, amd_txt, nvidia_txt = plot_model_stats(Ci_results.df, selected_model)
|
| 581 |
return (
|
| 582 |
fig,
|
| 583 |
amd_txt,
|
|
|
|
| 490 |
else:
|
| 491 |
# Switch to current mode: show model if selected; otherwise summary
|
| 492 |
if last_selected_model and Ci_results.df is not None and not Ci_results.df.empty and last_selected_model in Ci_results.df.index:
|
| 493 |
+
fig, amd_txt, nvidia_txt = plot_model_stats(Ci_results.df, last_selected_model, Ci_results.all_historical_data)
|
| 494 |
return (
|
| 495 |
gr.update(visible=True), # current_view
|
| 496 |
gr.update(visible=False), # historical_view
|
|
|
|
| 577 |
gr.update(visible=True), # time_series_detail_view
|
| 578 |
selected_model, True) # selected_model_state, in_model_view_state
|
| 579 |
else:
|
| 580 |
+
fig, amd_txt, nvidia_txt = plot_model_stats(Ci_results.df, selected_model, Ci_results.all_historical_data)
|
| 581 |
return (
|
| 582 |
fig,
|
| 583 |
amd_txt,
|
data.py
CHANGED
|
@@ -8,8 +8,8 @@ import json
|
|
| 8 |
import re
|
| 9 |
from typing import List, Tuple, Optional
|
| 10 |
|
| 11 |
-
# NOTE:
|
| 12 |
-
fs = HfFileSystem()
|
| 13 |
|
| 14 |
IMPORTANT_MODELS = [
|
| 15 |
"auto",
|
|
@@ -375,6 +375,57 @@ def get_fake_historical_data(start_date: str, end_date: str) -> pd.DataFrame:
|
|
| 375 |
def safe_extract(row: pd.DataFrame, key: str) -> int:
|
| 376 |
return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0
|
| 377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
|
| 379 |
"""Extract and process model data from DataFrame row."""
|
| 380 |
# Handle missing values and get counts directly from dataframe
|
|
|
|
| 8 |
import re
|
| 9 |
from typing import List, Tuple, Optional
|
| 10 |
|
| 11 |
+
# NOTE: Disable caching to ensure fresh data on each request
|
| 12 |
+
fs = HfFileSystem(use_listings_cache=False)
|
| 13 |
|
| 14 |
IMPORTANT_MODELS = [
|
| 15 |
"auto",
|
|
|
|
| 375 |
def safe_extract(row: pd.DataFrame, key: str) -> int:
|
| 376 |
return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0
|
| 377 |
|
| 378 |
+
|
| 379 |
+
def find_failure_first_seen(historical_df: pd.DataFrame, model_name: str, test_name: str, device: str, gpu_type: str) -> Optional[str]:
|
| 380 |
+
"""
|
| 381 |
+
Find the first date when a specific test failure appeared in historical data.
|
| 382 |
+
"""
|
| 383 |
+
if historical_df.empty:
|
| 384 |
+
return None
|
| 385 |
+
|
| 386 |
+
try:
|
| 387 |
+
# Normalize model name to match DataFrame index
|
| 388 |
+
model_name_lower = model_name.lower()
|
| 389 |
+
|
| 390 |
+
# Filter historical data for this model
|
| 391 |
+
model_data = historical_df[historical_df.index == model_name_lower].copy()
|
| 392 |
+
|
| 393 |
+
if model_data.empty:
|
| 394 |
+
return None
|
| 395 |
+
|
| 396 |
+
# Sort by date (oldest first)
|
| 397 |
+
model_data = model_data.sort_values('date')
|
| 398 |
+
|
| 399 |
+
# Check each date for this failure
|
| 400 |
+
for idx, row in model_data.iterrows():
|
| 401 |
+
failures = row.get(f'failures_{device}', None)
|
| 402 |
+
|
| 403 |
+
if failures is None or pd.isna(failures):
|
| 404 |
+
continue
|
| 405 |
+
|
| 406 |
+
# Handle case where failures might be a string (JSON)
|
| 407 |
+
if isinstance(failures, str):
|
| 408 |
+
try:
|
| 409 |
+
import json
|
| 410 |
+
failures = json.loads(failures)
|
| 411 |
+
except:
|
| 412 |
+
continue
|
| 413 |
+
|
| 414 |
+
# Check if this test appears in the failures for this gpu_type
|
| 415 |
+
if gpu_type in failures:
|
| 416 |
+
for test in failures[gpu_type]:
|
| 417 |
+
test_line = test.get('line', '')
|
| 418 |
+
if test_line == test_name:
|
| 419 |
+
# Found the first occurrence
|
| 420 |
+
return row.get('date', None)
|
| 421 |
+
|
| 422 |
+
return None
|
| 423 |
+
|
| 424 |
+
except Exception as e:
|
| 425 |
+
logger.error(f"Error finding first seen date for {test_name}: {e}")
|
| 426 |
+
return None
|
| 427 |
+
|
| 428 |
+
|
| 429 |
def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
|
| 430 |
"""Extract and process model data from DataFrame row."""
|
| 431 |
# Handle missing values and get counts directly from dataframe
|
model_page.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
import pandas as pd
|
| 3 |
from utils import generate_underlined_line
|
| 4 |
-
from data import extract_model_data
|
| 5 |
|
| 6 |
# Figure dimensions
|
| 7 |
FIGURE_WIDTH_DUAL = 18
|
|
@@ -85,7 +85,7 @@ def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) ->
|
|
| 85 |
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
|
| 86 |
|
| 87 |
|
| 88 |
-
def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str, str]:
|
| 89 |
"""Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA."""
|
| 90 |
# Handle case where the dataframe is empty or the model name could not be found in it
|
| 91 |
if df.empty or model_name not in df.index:
|
|
@@ -135,14 +135,14 @@ def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str
|
|
| 135 |
plt.tight_layout()
|
| 136 |
plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE)
|
| 137 |
|
| 138 |
-
amd_failed_info = prepare_textbox_content(failures_amd, 'AMD', bool(amd_filtered))
|
| 139 |
-
nvidia_failed_info = prepare_textbox_content(failures_nvidia, 'NVIDIA', bool(nvidia_filtered))
|
| 140 |
|
| 141 |
return fig, amd_failed_info, nvidia_failed_info
|
| 142 |
|
| 143 |
|
| 144 |
-
def prepare_textbox_content(failures: dict[str, list], device: str, data_available: bool) -> str:
|
| 145 |
-
"""Extract failure information from failures object."""
|
| 146 |
# Catch the case where there is no data
|
| 147 |
if not data_available:
|
| 148 |
return generate_underlined_line(f"No data for {device}")
|
|
@@ -160,21 +160,43 @@ def prepare_textbox_content(failures: dict[str, list], device: str, data_availab
|
|
| 160 |
""
|
| 161 |
]
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
# Add single-gpu failures
|
| 164 |
if single_failures:
|
| 165 |
info_lines.append(generate_underlined_line("Single GPU failures:"))
|
| 166 |
for test in single_failures:
|
| 167 |
-
|
| 168 |
-
name = name.split("::")[-1]
|
| 169 |
-
info_lines.append(name)
|
| 170 |
info_lines.append("\n")
|
| 171 |
|
| 172 |
# Add multi-gpu failures
|
| 173 |
if multi_failures:
|
| 174 |
info_lines.append(generate_underlined_line("Multi GPU failures:"))
|
| 175 |
for test in multi_failures:
|
| 176 |
-
|
| 177 |
-
name = name.split("::")[-1]
|
| 178 |
-
info_lines.append(name)
|
| 179 |
|
| 180 |
return "\n".join(info_lines)
|
|
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
import pandas as pd
|
| 3 |
from utils import generate_underlined_line
|
| 4 |
+
from data import extract_model_data, find_failure_first_seen
|
| 5 |
|
| 6 |
# Figure dimensions
|
| 7 |
FIGURE_WIDTH_DUAL = 18
|
|
|
|
| 85 |
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
|
| 86 |
|
| 87 |
|
| 88 |
+
def plot_model_stats(df: pd.DataFrame, model_name: str, historical_df: pd.DataFrame = None) -> tuple[plt.Figure, str, str]:
|
| 89 |
"""Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA."""
|
| 90 |
# Handle case where the dataframe is empty or the model name could not be found in it
|
| 91 |
if df.empty or model_name not in df.index:
|
|
|
|
| 135 |
plt.tight_layout()
|
| 136 |
plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE)
|
| 137 |
|
| 138 |
+
amd_failed_info = prepare_textbox_content(failures_amd, 'AMD', bool(amd_filtered), model_name, historical_df)
|
| 139 |
+
nvidia_failed_info = prepare_textbox_content(failures_nvidia, 'NVIDIA', bool(nvidia_filtered), model_name, historical_df)
|
| 140 |
|
| 141 |
return fig, amd_failed_info, nvidia_failed_info
|
| 142 |
|
| 143 |
|
| 144 |
+
def prepare_textbox_content(failures: dict[str, list], device: str, data_available: bool, model_name: str = None, historical_df: pd.DataFrame = None) -> str:
|
| 145 |
+
"""Extract failure information from failures object with first seen dates."""
|
| 146 |
# Catch the case where there is no data
|
| 147 |
if not data_available:
|
| 148 |
return generate_underlined_line(f"No data for {device}")
|
|
|
|
| 160 |
""
|
| 161 |
]
|
| 162 |
|
| 163 |
+
# Helper function to format failure line with first seen date
|
| 164 |
+
def format_failure_line(test: dict, gpu_type: str) -> str:
|
| 165 |
+
full_name = test.get("line", "::*could not find name*")
|
| 166 |
+
short_name = full_name.split("::")[-1]
|
| 167 |
+
|
| 168 |
+
# Try to find first seen date if historical data is available
|
| 169 |
+
if historical_df is not None and model_name is not None and not historical_df.empty:
|
| 170 |
+
first_seen = find_failure_first_seen(
|
| 171 |
+
historical_df,
|
| 172 |
+
model_name,
|
| 173 |
+
full_name,
|
| 174 |
+
device.lower(),
|
| 175 |
+
gpu_type
|
| 176 |
+
)
|
| 177 |
+
if first_seen:
|
| 178 |
+
# Format date as MM-DD-YYYY
|
| 179 |
+
try:
|
| 180 |
+
from datetime import datetime
|
| 181 |
+
date_obj = datetime.strptime(first_seen, "%Y-%m-%d")
|
| 182 |
+
formatted_date = date_obj.strftime("%m-%d-%Y")
|
| 183 |
+
return f"{short_name} (First seen: {formatted_date})"
|
| 184 |
+
except:
|
| 185 |
+
return f"{short_name} (First seen: {first_seen})"
|
| 186 |
+
|
| 187 |
+
return short_name
|
| 188 |
+
|
| 189 |
# Add single-gpu failures
|
| 190 |
if single_failures:
|
| 191 |
info_lines.append(generate_underlined_line("Single GPU failures:"))
|
| 192 |
for test in single_failures:
|
| 193 |
+
info_lines.append(format_failure_line(test, "single"))
|
|
|
|
|
|
|
| 194 |
info_lines.append("\n")
|
| 195 |
|
| 196 |
# Add multi-gpu failures
|
| 197 |
if multi_failures:
|
| 198 |
info_lines.append(generate_underlined_line("Multi GPU failures:"))
|
| 199 |
for test in multi_failures:
|
| 200 |
+
info_lines.append(format_failure_line(test, "multi"))
|
|
|
|
|
|
|
| 201 |
|
| 202 |
return "\n".join(info_lines)
|