Spaces:
Running
Running
Update prompt_refiner.py
Browse files- prompt_refiner.py +83 -54
prompt_refiner.py
CHANGED
@@ -1,88 +1,110 @@
|
|
1 |
import json
|
2 |
import re
|
3 |
-
from typing import Optional, Dict, Any,
|
4 |
from pydantic import BaseModel, Field, validator
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from huggingface_hub.errors import HfHubHTTPError
|
7 |
-
from variables import
|
8 |
|
9 |
class LLMResponse(BaseModel):
|
10 |
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
|
11 |
refined_prompt: str = Field(..., description="The refined version of the prompt")
|
12 |
-
explanation_of_refinements:
|
13 |
response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")
|
14 |
|
15 |
-
@validator('initial_prompt_evaluation', 'refined_prompt')
|
16 |
def clean_text_fields(cls, v):
|
17 |
if isinstance(v, str):
|
18 |
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
19 |
return v
|
20 |
|
21 |
-
@validator('explanation_of_refinements')
|
22 |
-
def clean_refinements(cls, v):
|
23 |
-
if isinstance(v, str):
|
24 |
-
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
25 |
-
elif isinstance(v, list):
|
26 |
-
return [item.strip().replace('\\n', '\n').replace('\\"', '"') if isinstance(item, str) else item for item in v]
|
27 |
-
return v
|
28 |
-
|
29 |
class PromptRefiner:
|
30 |
-
def __init__(self, api_token: str, meta_prompts):
|
31 |
self.client = InferenceClient(token=api_token, timeout=120)
|
32 |
self.meta_prompts = meta_prompts
|
33 |
|
34 |
-
def
|
35 |
-
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
return self._sanitize_json_string(json_match.group(1))
|
47 |
-
return content
|
48 |
|
49 |
def _parse_response(self, response_content: str) -> dict:
|
|
|
50 |
try:
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Second attempt: Try to extract JSON from <json> tags
|
60 |
-
json_content = self._extract_json_content(response_content)
|
61 |
try:
|
62 |
-
parsed_json = json.loads(
|
63 |
if isinstance(parsed_json, str):
|
64 |
parsed_json = json.loads(parsed_json)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
except Exception as e:
|
71 |
-
print(f"Error parsing response: {
|
72 |
print(f"Raw content: {response_content}")
|
73 |
return self._create_error_dict(str(e))
|
74 |
|
75 |
-
def _normalize_json_output(self, json_output: dict) -> dict:
|
76 |
-
"""Normalize JSON output to expected format."""
|
77 |
-
return {
|
78 |
-
"initial_prompt_evaluation": json_output.get("initial_prompt_evaluation", ""),
|
79 |
-
"refined_prompt": json_output.get("refined_prompt", ""),
|
80 |
-
"explanation_of_refinements": json_output.get("explanation_of_refinements", ""),
|
81 |
-
"response_content": json_output
|
82 |
-
}
|
83 |
-
|
84 |
def _parse_with_regex(self, content: str) -> dict:
|
85 |
-
"""Parse content using regex patterns."""
|
86 |
output = {}
|
87 |
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
88 |
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
@@ -93,7 +115,7 @@ class PromptRefiner:
|
|
93 |
return output
|
94 |
|
95 |
def _create_error_dict(self, error_message: str) -> dict:
|
96 |
-
"""Create standardized error response dictionary."""
|
97 |
return {
|
98 |
"initial_prompt_evaluation": f"Error parsing response: {error_message}",
|
99 |
"refined_prompt": "",
|
@@ -101,4 +123,11 @@ class PromptRefiner:
|
|
101 |
"response_content": {"error": error_message}
|
102 |
}
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import re
|
3 |
+
from typing import Optional, Dict, Any, Tuple
|
4 |
from pydantic import BaseModel, Field, validator
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from huggingface_hub.errors import HfHubHTTPError
|
7 |
+
from variables import meta_prompts, prompt_refiner_model
|
8 |
|
9 |
class LLMResponse(BaseModel):
|
10 |
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
|
11 |
refined_prompt: str = Field(..., description="The refined version of the prompt")
|
12 |
+
explanation_of_refinements: str = Field(..., description="Explanation of the refinements made")
|
13 |
response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")
|
14 |
|
15 |
+
@validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements')
|
16 |
def clean_text_fields(cls, v):
|
17 |
if isinstance(v, str):
|
18 |
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
19 |
return v
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class PromptRefiner:
|
22 |
+
def __init__(self, api_token: str, meta_prompts: dict):
|
23 |
self.client = InferenceClient(token=api_token, timeout=120)
|
24 |
self.meta_prompts = meta_prompts
|
25 |
|
26 |
+
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]:
|
27 |
+
"""Refine the given prompt using the selected meta prompt."""
|
28 |
+
try:
|
29 |
+
selected_meta_prompt = self.meta_prompts.get(
|
30 |
+
meta_prompt_choice,
|
31 |
+
self.meta_prompts["star"]
|
32 |
+
)
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "system",
|
37 |
+
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
|
42 |
+
}
|
43 |
+
]
|
44 |
+
|
45 |
+
response = self.client.chat_completion(
|
46 |
+
model=prompt_refiner_model,
|
47 |
+
messages=messages,
|
48 |
+
max_tokens=3000,
|
49 |
+
temperature=0.8
|
50 |
+
)
|
51 |
+
|
52 |
+
response_content = response.choices[0].message.content.strip()
|
53 |
+
result = self._parse_response(response_content)
|
54 |
+
|
55 |
+
try:
|
56 |
+
llm_response = LLMResponse(**result)
|
57 |
+
return (
|
58 |
+
llm_response.initial_prompt_evaluation,
|
59 |
+
llm_response.refined_prompt,
|
60 |
+
llm_response.explanation_of_refinements,
|
61 |
+
llm_response.dict()
|
62 |
+
)
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error creating LLMResponse: {e}")
|
65 |
+
return self._create_error_response(f"Error validating response: {str(e)}")
|
66 |
|
67 |
+
except HfHubHTTPError as e:
|
68 |
+
return self._create_error_response("Model timeout. Please try again later.")
|
69 |
+
except Exception as e:
|
70 |
+
return self._create_error_response(f"Unexpected error: {str(e)}")
|
|
|
|
|
71 |
|
72 |
def _parse_response(self, response_content: str) -> dict:
|
73 |
+
"""Parse the LLM response content."""
|
74 |
try:
|
75 |
+
# Try to extract JSON from <json> tags
|
76 |
+
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
77 |
+
if json_match:
|
78 |
+
json_str = json_match.group(1).strip()
|
79 |
+
# Clean up the JSON string
|
80 |
+
json_str = re.sub(r'\s+', ' ', json_str)
|
81 |
+
json_str = json_str.replace('•', '*') # Replace bullet points
|
82 |
+
|
|
|
|
|
83 |
try:
|
84 |
+
parsed_json = json.loads(json_str)
|
85 |
if isinstance(parsed_json, str):
|
86 |
parsed_json = json.loads(parsed_json)
|
87 |
+
|
88 |
+
return {
|
89 |
+
"initial_prompt_evaluation": parsed_json.get("initial_prompt_evaluation", ""),
|
90 |
+
"refined_prompt": parsed_json.get("refined_prompt", ""),
|
91 |
+
"explanation_of_refinements": parsed_json.get("explanation_of_refinements", ""),
|
92 |
+
"response_content": parsed_json
|
93 |
+
}
|
94 |
+
except json.JSONDecodeError as e:
|
95 |
+
print(f"JSON parsing error: {e}")
|
96 |
+
return self._create_error_dict(str(e))
|
97 |
+
|
98 |
+
# Fallback to regex parsing if JSON extraction fails
|
99 |
+
return self._parse_with_regex(response_content)
|
100 |
|
101 |
except Exception as e:
|
102 |
+
print(f"Error parsing response: {e}")
|
103 |
print(f"Raw content: {response_content}")
|
104 |
return self._create_error_dict(str(e))
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def _parse_with_regex(self, content: str) -> dict:
|
107 |
+
"""Parse content using regex patterns when JSON parsing fails."""
|
108 |
output = {}
|
109 |
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
110 |
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
|
|
115 |
return output
|
116 |
|
117 |
def _create_error_dict(self, error_message: str) -> dict:
|
118 |
+
"""Create a standardized error response dictionary."""
|
119 |
return {
|
120 |
"initial_prompt_evaluation": f"Error parsing response: {error_message}",
|
121 |
"refined_prompt": "",
|
|
|
123 |
"response_content": {"error": error_message}
|
124 |
}
|
125 |
|
126 |
+
def _create_error_response(self, error_message: str) -> Tuple[str, str, str, dict]:
|
127 |
+
"""Create a standardized error response tuple."""
|
128 |
+
return (
|
129 |
+
f"Error: {error_message}",
|
130 |
+
"The selected model is currently unavailable.",
|
131 |
+
"An error occurred during processing.",
|
132 |
+
{"error": error_message}
|
133 |
+
)
|