Spaces:
Running
Running
import gradio as gr | |
from prompt_refiner import PromptRefiner | |
from variables import models, explanation_markdown, metaprompt_list, examples | |
from custom_css import custom_css | |
class GradioInterface: | |
def __init__(self, prompt_refiner: PromptRefiner, custom_css): | |
self.prompt_refiner = prompt_refiner | |
# Set default model to second-to-last in the list | |
default_model = models[-1] if len(models) >= 1 else models[0] if models else None | |
#meta_prompt_choice=metaprompt_list[0] | |
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface: | |
# CONTAINER 1 | |
with gr.Column(elem_classes=["container", "title-container"]): | |
gr.Markdown("# PROMPT++") | |
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts") | |
gr.Markdown("Learn how to generate an improved version of your prompts.") | |
# CONTAINER 2 | |
with gr.Column(elem_classes=["container", "input-container"]): | |
prompt_text = gr.Textbox(label="Type your prompt (or leave empty to see metaprompt)",lines=5) | |
with gr.Accordion("Prompt Examples", open=False, visible=True): | |
gr.Examples(examples=examples,inputs=[prompt_text]) | |
automatic_metaprompt_button = gr.Button( | |
"Automatic Choice for Refinement Method", | |
elem_classes=["button-highlight"] | |
) | |
MetaPrompt_analysis = gr.Markdown() | |
# CONTAINER 3 | |
with gr.Column(elem_classes=["container","meta-container"]): | |
meta_prompt_choice = gr.Radio( | |
choices=metaprompt_list, | |
label="Choose Meta Prompt", | |
value=metaprompt_list[0], | |
elem_classes=["no-background", "radio-group"] | |
) | |
refine_button = gr.Button( | |
"Refine Prompt", | |
elem_classes=["button-waiting"] | |
) | |
with gr.Accordion("Metaprompt Explanation", open=False, visible=True): | |
gr.Markdown(explanation_markdown) | |
with gr.Column(elem_classes=["container", "analysis-container"]): | |
gr.Markdown(" ") | |
prompt_evaluation = gr.Markdown() | |
gr.Markdown("### Refined Prompt") | |
refined_prompt = gr.Textbox( | |
label=" ", | |
interactive=True, | |
show_label=True, | |
show_copy_button=True, | |
) | |
explanation_of_refinements = gr.Markdown() | |
with gr.Column(elem_classes=["container", "model-container"]): | |
with gr.Row(): | |
apply_model = gr.Dropdown( | |
choices=models, | |
value=default_model, | |
label="Choose the Model", | |
container=False, | |
scale=1, | |
min_width=300 | |
) | |
apply_button = gr.Button( | |
"Apply Prompts", | |
elem_classes=["button-waiting"] | |
) | |
gr.Markdown("### Prompts on Chosen Model") | |
with gr.Tabs(elem_classes=["tabs"]): | |
with gr.TabItem("Prompts Output Comparison", elem_classes=["tabitem"]): | |
with gr.Row(elem_classes=["output-row"]): | |
with gr.Column(scale=1, elem_classes=["comparison-column"]): | |
gr.Markdown("### Original Prompt Output") | |
original_output1 = gr.Markdown( | |
# value="Output will appear here", | |
elem_classes=["output-content"], | |
visible=True | |
) | |
with gr.Column(scale=1, elem_classes=["comparison-column"]): | |
gr.Markdown("### Refined Prompt Output") | |
refined_output1 = gr.Markdown( | |
# value="Output will appear here", | |
elem_classes=["output-content"], | |
visible=True | |
) | |
with gr.TabItem("Original Prompt Output", elem_classes=["tabitem"]): | |
with gr.Row(elem_classes=["output-row"]): | |
with gr.Column(scale=1, elem_classes=["comparison-column"]): | |
gr.Markdown("### Original Prompt Output") | |
original_output = gr.Markdown( | |
# value="Output will appear here", | |
elem_classes=[ "output-content"], | |
visible=True | |
) | |
with gr.TabItem("Refined Prompt Output", elem_classes=["tabitem"]): | |
with gr.Row(elem_classes=["output-row"]): | |
with gr.Column(scale=1, elem_classes=["comparison-column"]): | |
gr.Markdown("### Refined Prompt Output") | |
refined_output = gr.Markdown( | |
# value="Output will appear here", | |
elem_classes=["output-content"], | |
visible=True | |
) | |
with gr.Accordion("Full Response JSON", open=False, visible=True): | |
full_response_json = gr.JSON() | |
# Button click handlers | |
automatic_metaprompt_button.click( | |
fn=self.automatic_metaprompt, | |
inputs=[prompt_text], | |
outputs=[MetaPrompt_analysis, meta_prompt_choice] | |
).then( | |
fn=lambda: None, | |
inputs=None, | |
outputs=None, | |
js=""" | |
() => { | |
// Clear subsequent outputs | |
document.querySelectorAll('.analysis-container textarea, .analysis-container .markdown-text, .model-container .markdown-text, .comparison-output').forEach(el => { | |
if (el.value !== undefined) { | |
el.value = ''; | |
} else { | |
el.textContent = ''; | |
} | |
}); | |
// Update button states | |
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => | |
btn.textContent.includes('Automatic Choice') || | |
btn.textContent.includes('Refine Prompt') || | |
btn.textContent.includes('Apply Prompts') | |
); | |
allButtons.forEach(btn => btn.classList.remove('button-highlight')); | |
allButtons[1].classList.add('button-highlight'); // Highlight refine button | |
allButtons[0].classList.add('button-completed'); // Complete current button | |
allButtons[2].classList.add('button-waiting'); // Set apply button to waiting | |
} | |
""" | |
) | |
refine_button.click( | |
fn=self.refine_prompt, | |
inputs=[prompt_text, meta_prompt_choice], | |
outputs=[prompt_evaluation, refined_prompt, explanation_of_refinements, full_response_json] | |
).then( | |
fn=lambda: None, | |
inputs=None, | |
outputs=None, | |
js=""" | |
() => { | |
// Clear model outputs | |
document.querySelectorAll('.model-container .markdown-text, .comparison-output').forEach(el => { | |
if (el.value !== undefined) { | |
el.value = ''; | |
} else { | |
el.textContent = ''; | |
} | |
}); | |
// Update button states | |
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => | |
btn.textContent.includes('Automatic Choice') || | |
btn.textContent.includes('Refine Prompt') || | |
btn.textContent.includes('Apply Prompts') | |
); | |
allButtons.forEach(btn => btn.classList.remove('button-highlight')); | |
allButtons[2].classList.add('button-highlight'); // Highlight apply button | |
allButtons[1].classList.add('button-completed'); // Complete current button | |
allButtons[2].classList.remove('button-waiting'); // Remove waiting from apply button | |
} | |
""" | |
) | |
apply_button.click( | |
fn=self.apply_prompts, | |
inputs=[prompt_text, refined_prompt, apply_model], | |
outputs=[original_output, refined_output, original_output1, refined_output1], | |
show_progress=True # Add this line | |
).then( | |
fn=lambda: None, | |
inputs=None, | |
outputs=None, | |
js=""" | |
() => { | |
// Update button states | |
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => | |
btn.textContent.includes('Automatic Choice') || | |
btn.textContent.includes('Refine Prompt') || | |
btn.textContent.includes('Apply Prompts') | |
); | |
allButtons.forEach(btn => btn.classList.remove('button-highlight', 'button-waiting')); | |
allButtons[2].classList.add('button-completed'); // Complete apply button | |
// Force refresh of output containers | |
document.querySelectorAll('.comparison-output').forEach(el => { | |
if (el.parentElement) { | |
el.parentElement.style.display = 'none'; | |
setTimeout(() => { | |
el.parentElement.style.display = 'block'; | |
}, 100); | |
} | |
}); | |
} | |
""" | |
) | |
# Reset when input changes | |
prompt_text.change( | |
fn=lambda: None, | |
inputs=None, | |
outputs=None, | |
js=""" | |
() => { | |
// Clear all outputs | |
document.querySelectorAll('.analysis-container textarea, .analysis-container .markdown-text, .model-container .markdown-text, .comparison-output').forEach(el => { | |
if (el.value !== undefined) { | |
el.value = ''; | |
} else { | |
el.textContent = ''; | |
} | |
}); | |
// Reset all button states | |
const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => | |
btn.textContent.includes('Automatic Choice') || | |
btn.textContent.includes('Refine Prompt') || | |
btn.textContent.includes('Apply Prompts') | |
); | |
allButtons.forEach(btn => { | |
btn.classList.remove('button-completed', 'button-highlight', 'button-waiting'); | |
}); | |
allButtons[0].classList.add('button-highlight'); // Highlight first button | |
allButtons.slice(1).forEach(btn => btn.classList.add('button-waiting')); // Set subsequent buttons to waiting | |
} | |
""" | |
) | |
def automatic_metaprompt(self, prompt: str) -> tuple: | |
"""Handle automatic metaprompt selection""" | |
try: | |
if not prompt.strip(): | |
return "Please enter a prompt to analyze.", None | |
metaprompt_analysis, recommended_key = self.prompt_refiner.automatic_metaprompt(prompt) | |
return metaprompt_analysis, recommended_key | |
except Exception as e: | |
error_message = f"Error in automatic metaprompt: {str(e)}" | |
return error_message, None | |
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple: | |
"""Handle manual prompt refinement""" | |
try: | |
if not prompt.strip(): | |
return ("No prompt provided.", "", "", {}) | |
result = self.prompt_refiner.refine_prompt(prompt, meta_prompt_choice) | |
return ( | |
result[0], # initial_prompt_evaluation | |
result[1], # refined_prompt | |
result[2], # explanation_of_refinements | |
result[3] # full_response | |
) | |
except Exception as e: | |
error_message = f"Error in refine_prompt: {str(e)}" | |
return error_message, "", "", {} | |
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str) -> tuple: | |
"""Apply both original and refined prompts to the selected model""" | |
try: | |
if not original_prompt or not refined_prompt: | |
return ("Please provide both original and refined prompts.", | |
"Please provide both original and refined prompts.", | |
"Please provide both original and refined prompts.", | |
"Please provide both original and refined prompts.") | |
if not model: | |
return ("Please select a model.", | |
"Please select a model.", | |
"Please select a model.", | |
"Please select a model.") | |
# Apply prompts and get outputs | |
try: | |
# print(original_prompt) | |
# print(refined_prompt) | |
#print(model) | |
original_output = self.prompt_refiner.apply_prompt(original_prompt, model) | |
#print(original_output) | |
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model) | |
except Exception as e: | |
return (f"Error applying prompts: {str(e)}", | |
f"Error applying prompts: {str(e)}", | |
f"Error applying prompts: {str(e)}", | |
f"Error applying prompts: {str(e)}") | |
# Ensure we have string outputs | |
original_output = str(original_output) if original_output is not None else "No output generated" | |
refined_output = str(refined_output) if refined_output is not None else "No output generated" | |
print('-'*100) | |
print(original_output) | |
print('-'*100) | |
print(refined_output) | |
print('-'*100) | |
return ( | |
original_output, # For Original Prompt Output tab | |
refined_output, # For Refined Prompt Output tab | |
original_output, # For Comparison tab - original | |
refined_output # For Comparison tab - refined | |
) | |
except Exception as e: | |
error_message = f"Error in apply_prompts: {str(e)}" | |
return (error_message, error_message, error_message, error_message) | |
def launch(self, share=False): | |
"""Launch the Gradio interface""" | |
self.interface.launch(share=share) | |
if __name__ == '__main__': | |
from variables import api_token, meta_prompts, metaprompt_explanations | |
# Initialize the prompt refiner | |
prompt_refiner = PromptRefiner(api_token, meta_prompts, metaprompt_explanations) | |
# Create and launch the Gradio interface | |
gradio_interface = GradioInterface(prompt_refiner, custom_css) | |
gradio_interface.launch(share=True) |