Spaces:
Runtime error
Runtime error
Commit
·
41aed3f
1
Parent(s):
a10071f
add: conversion from m4a to wav
Browse files- utils/general_utils.py +41 -14
utils/general_utils.py
CHANGED
|
@@ -38,23 +38,50 @@ async def process_audio(audio, device):
|
|
| 38 |
return audio_cache.contains_without_lock(filename)
|
| 39 |
logging.info(f"Processing audio '{filename}'.")
|
| 40 |
|
| 41 |
-
# Read
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
max_val = np.iinfo(np.int16).max
|
| 46 |
-
audio_samples /= max_val
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def clean_text(text: str) -> str:
|
| 60 |
"""
|
|
|
|
| 38 |
return audio_cache.contains_without_lock(filename)
|
| 39 |
logging.info(f"Processing audio '{filename}'.")
|
| 40 |
|
| 41 |
+
# Read the audio file into a temporary file
|
| 42 |
+
with NamedTemporaryFile(delete=False, suffix=".m4a") as temp_m4a:
|
| 43 |
+
temp_m4a_path = temp_m4a.name
|
| 44 |
+
temp_m4a.write(await audio.read())
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Convert M4A to WAV using FFmpeg
|
| 47 |
+
temp_wav_path = temp_m4a_path.replace(".m4a", ".wav")
|
| 48 |
+
try:
|
| 49 |
+
subprocess.run(
|
| 50 |
+
[
|
| 51 |
+
"ffmpeg", "-i", temp_m4a_path, # Input file
|
| 52 |
+
"-ar", "16000", # Resample to 16kHz
|
| 53 |
+
"-ac", "1", # Convert to mono
|
| 54 |
+
temp_wav_path # Output file
|
| 55 |
+
],
|
| 56 |
+
check=True,
|
| 57 |
+
stdout=subprocess.PIPE,
|
| 58 |
+
stderr=subprocess.PIPE
|
| 59 |
+
)
|
| 60 |
+
except subprocess.CalledProcessError as e:
|
| 61 |
+
logging.error(f"FFmpeg conversion failed: {e.stderr.decode()}")
|
| 62 |
+
raise HTTPException(status_code=500, detail="Failed to process audio file.")
|
| 63 |
+
finally:
|
| 64 |
+
os.remove(temp_m4a_path) # Clean up the temporary M4A file
|
| 65 |
|
| 66 |
+
try:
|
| 67 |
+
# Read and preprocess the audio
|
| 68 |
+
audio_segment = AudioSegment.from_file(temp_wav_path, format="wav")
|
| 69 |
+
audio_samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
|
| 70 |
+
max_val = np.iinfo(np.int16).max
|
| 71 |
+
audio_samples /= max_val
|
| 72 |
|
| 73 |
+
if audio_segment.channels > 1:
|
| 74 |
+
audio_samples = audio_samples.reshape(-1, audio_segment.channels).mean(axis=1)
|
| 75 |
+
|
| 76 |
+
audio_input = librosa.resample(audio_samples, orig_sr=audio_segment.frame_rate, target_sr=16000)
|
| 77 |
+
# input_values = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
| 78 |
+
|
| 79 |
+
# Cache the processed audio
|
| 80 |
+
cache_entry = {"audio_input": audio_input, "input_values": None, "ssl_logits": None}
|
| 81 |
+
audio_cache.set_without_lock(filename, cache_entry)
|
| 82 |
+
return cache_entry
|
| 83 |
+
finally:
|
| 84 |
+
os.remove(temp_wav_path)
|
| 85 |
|
| 86 |
def clean_text(text: str) -> str:
|
| 87 |
"""
|