Spaces:
Runtime error
Runtime error
Commit
·
385e141
1
Parent(s):
58446fa
first commit
Browse files- .devcontainer/devcontainer.json +33 -0
- .dockerignore +12 -0
- .gitignore +0 -0
- Dockerfile +25 -0
- app.py +258 -0
- inference.py +214 -0
- notebook-inference.ipynb +0 -0
- requirements.txt +0 -0
.devcontainer/devcontainer.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "Python 3",
|
| 3 |
+
// Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
|
| 4 |
+
"image": "mcr.microsoft.com/devcontainers/python:1-3.11-bullseye",
|
| 5 |
+
"customizations": {
|
| 6 |
+
"codespaces": {
|
| 7 |
+
"openFiles": [
|
| 8 |
+
"README.md",
|
| 9 |
+
"app.py"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
"vscode": {
|
| 13 |
+
"settings": {},
|
| 14 |
+
"extensions": [
|
| 15 |
+
"ms-python.python",
|
| 16 |
+
"ms-python.vscode-pylance"
|
| 17 |
+
]
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
"updateContentCommand": "[ -f packages.txt ] && sudo apt update && sudo apt upgrade -y && sudo xargs apt install -y <packages.txt; [ -f requirements.txt ] && pip3 install --user -r requirements.txt; pip3 install --user streamlit; echo '✅ Packages installed and Requirements met'",
|
| 21 |
+
"postAttachCommand": {
|
| 22 |
+
"server": "streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false"
|
| 23 |
+
},
|
| 24 |
+
"portsAttributes": {
|
| 25 |
+
"8501": {
|
| 26 |
+
"label": "Application",
|
| 27 |
+
"onAutoForward": "openPreview"
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"forwardPorts": [
|
| 31 |
+
8501
|
| 32 |
+
]
|
| 33 |
+
}
|
.dockerignore
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ignore unnecessary files
|
| 2 |
+
.git
|
| 3 |
+
__pycache__
|
| 4 |
+
*.pyc
|
| 5 |
+
*.pyo
|
| 6 |
+
*.log
|
| 7 |
+
*.tmp
|
| 8 |
+
*.zip
|
| 9 |
+
*.tar.gz
|
| 10 |
+
Datasets/
|
| 11 |
+
.venv/
|
| 12 |
+
Audios/
|
.gitignore
ADDED
|
Binary file (96 Bytes). View file
|
|
|
Dockerfile
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as a parent image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies (for librosa and other packages)
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
libsndfile1 \
|
| 10 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
+
|
| 12 |
+
# Copy requirements.txt first to leverage Docker's caching
|
| 13 |
+
COPY requirements.txt .
|
| 14 |
+
|
| 15 |
+
# Install Python dependencies
|
| 16 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
+
|
| 18 |
+
# Copy the rest of the application code
|
| 19 |
+
COPY . .
|
| 20 |
+
|
| 21 |
+
# Expose port 10000 (or whatever port your app uses)
|
| 22 |
+
EXPOSE 10000
|
| 23 |
+
|
| 24 |
+
# Command to run the application using Uvicorn
|
| 25 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "10000"]
|
app.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from fastapi import FastAPI, UploadFile, Form, HTTPException
|
| 3 |
+
from fastapi.responses import JSONResponse
|
| 4 |
+
import uvicorn
|
| 5 |
+
from typing import List
|
| 6 |
+
import torch
|
| 7 |
+
import librosa
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 10 |
+
import re
|
| 11 |
+
import numpy as np
|
| 12 |
+
import cmudict
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
import os
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
logging.basicConfig(level=logging.INFO)
|
| 18 |
+
|
| 19 |
+
cmu = cmudict.dict()
|
| 20 |
+
|
| 21 |
+
# Initialize FastAPI app
|
| 22 |
+
app = FastAPI()
|
| 23 |
+
|
| 24 |
+
# Load the processor and model
|
| 25 |
+
MODEL_NAME = "mrrubino/wav2vec2-large-xlsr-53-l2-arctic-phoneme" # wav2vec based phoneme trascriber trained on L2-ARTIC
|
| 26 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 27 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 28 |
+
model.eval()
|
| 29 |
+
|
| 30 |
+
# Check device availability
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
model.to(device)
|
| 33 |
+
|
| 34 |
+
def load_audio(audio_path, target_sr=16000):
|
| 35 |
+
"""Load an audio file and resample it to 16kHz."""
|
| 36 |
+
audio, sr = librosa.load(audio_path, sr=target_sr)
|
| 37 |
+
return audio
|
| 38 |
+
|
| 39 |
+
# Original ARPAbet to IPA mapping from SoapBox Labs
|
| 40 |
+
arpabet_to_ipa = {
|
| 41 |
+
"AA": "a", "AE": "æ", "AH": "ʌ", "AO": "ɔ", "AW": "aʊ", "AY": "aɪ",
|
| 42 |
+
"EH": "ɛ", "ER": "ɚ", "EY": "eɪ", "IH": "ɪ", "IY": "i", "OW": "oʊ",
|
| 43 |
+
"OY": "ɔɪ", "UH": "ʊ", "UW": "u", "B": "b", "CH": "t͡ʃ", "D": "d",
|
| 44 |
+
"DH": "ð", "F": "f", "G": "ɡ", "HH": "h", "JH": "dʒ", "K": "k",
|
| 45 |
+
"L": "l", "M": "m", "N": "n", "NG": "ŋ", "P": "p", "R": "ɹ",
|
| 46 |
+
"S": "s", "SH": "ʃ", "T": "t", "TH": "θ", "V": "v", "W": "w",
|
| 47 |
+
"Y": "j", "Z": "z", "ZH": "ʒ"
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
# Invert the dictionary to map IPA to ARPAbet
|
| 51 |
+
ipa_to_arpabet = {v: k for k, v in arpabet_to_ipa.items()}
|
| 52 |
+
|
| 53 |
+
def convert_ipa_to_arpabet(ipa_words):
|
| 54 |
+
"""
|
| 55 |
+
Convert a list of IPA words (strings of concatenated phonemes) to ARPAbet words.
|
| 56 |
+
|
| 57 |
+
:param ipa_words: List of IPA words where each word is a string of concatenated phonemes.
|
| 58 |
+
:return: List of lists, where each inner list contains ARPAbet phonemes for a word.
|
| 59 |
+
"""
|
| 60 |
+
arpabet_words = []
|
| 61 |
+
for word in ipa_words:
|
| 62 |
+
# Break the word into phonemes
|
| 63 |
+
phonemes = [] # Collect matched phonemes
|
| 64 |
+
i = 0
|
| 65 |
+
while i < len(word):
|
| 66 |
+
matched = False
|
| 67 |
+
# Match multi-character IPA phonemes first
|
| 68 |
+
for ipa_phoneme in sorted(ipa_to_arpabet.keys(), key=len, reverse=True):
|
| 69 |
+
if word[i:].startswith(ipa_phoneme):
|
| 70 |
+
phonemes.append(ipa_to_arpabet[ipa_phoneme])
|
| 71 |
+
i += len(ipa_phoneme)
|
| 72 |
+
matched = True
|
| 73 |
+
break
|
| 74 |
+
# If no match, add an unknown marker and move forward
|
| 75 |
+
if not matched:
|
| 76 |
+
phonemes.append("<UNK>")
|
| 77 |
+
i += 1
|
| 78 |
+
# Append the list of phonemes for the word
|
| 79 |
+
arpabet_words.append(phonemes)
|
| 80 |
+
return arpabet_words
|
| 81 |
+
|
| 82 |
+
def remove_numbers_from_phonemes(phon_list):
|
| 83 |
+
"""
|
| 84 |
+
Remove all numbers from phonemes in a nested list.
|
| 85 |
+
|
| 86 |
+
Parameters:
|
| 87 |
+
phon_list (list of lists): Nested list of phonemes.
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
list of lists: Updated nested list with numbers removed from phonemes.
|
| 91 |
+
"""
|
| 92 |
+
cleaned_phon_list = []
|
| 93 |
+
for word_phonemes in phon_list:
|
| 94 |
+
cleaned_word = [re.sub(r'\d', '', phoneme) for phoneme in word_phonemes]
|
| 95 |
+
cleaned_phon_list.append(cleaned_word)
|
| 96 |
+
return cleaned_phon_list
|
| 97 |
+
|
| 98 |
+
def align_phoneme_sequences(truth_words, uttered_words, gap_penalty=1, substitution_cost=1):
|
| 99 |
+
"""
|
| 100 |
+
Align phoneme sequences separated by words.
|
| 101 |
+
|
| 102 |
+
Parameters:
|
| 103 |
+
truth_words (list of lists): Ground truth phoneme sequences grouped by words.
|
| 104 |
+
uttered_words (list of lists): Uttered phoneme sequences grouped by words.
|
| 105 |
+
gap_penalty (int): Penalty for gaps.
|
| 106 |
+
substitution_cost (int): Cost for substitutions.
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
alignment (list of tuples): Aligned phoneme sequences with '-' for gaps.
|
| 110 |
+
"""
|
| 111 |
+
def align_two_sequences(seq1, seq2):
|
| 112 |
+
"""
|
| 113 |
+
Align two sequences using dynamic programming.
|
| 114 |
+
"""
|
| 115 |
+
n = len(seq1)
|
| 116 |
+
m = len(seq2)
|
| 117 |
+
dp = np.zeros((n + 1, m + 1))
|
| 118 |
+
|
| 119 |
+
# Initialize DP table
|
| 120 |
+
for i in range(n + 1):
|
| 121 |
+
dp[i][0] = i * gap_penalty
|
| 122 |
+
for j in range(m + 1):
|
| 123 |
+
dp[0][j] = j * gap_penalty
|
| 124 |
+
|
| 125 |
+
# Fill DP table
|
| 126 |
+
for i in range(1, n + 1):
|
| 127 |
+
for j in range(1, m + 1):
|
| 128 |
+
match_cost = 0 if seq1[i - 1] == seq2[j - 1] else substitution_cost
|
| 129 |
+
dp[i][j] = min(
|
| 130 |
+
dp[i - 1][j - 1] + match_cost, # Match or substitution
|
| 131 |
+
dp[i - 1][j] + gap_penalty, # Deletion
|
| 132 |
+
dp[i][j - 1] + gap_penalty # Insertion
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Traceback to find alignment
|
| 136 |
+
alignment_seq1 = []
|
| 137 |
+
alignment_seq2 = []
|
| 138 |
+
i, j = n, m
|
| 139 |
+
while i > 0 or j > 0:
|
| 140 |
+
if i > 0 and j > 0 and dp[i][j] == dp[i - 1][j - 1] + (0 if seq1[i - 1] == seq2[j - 1] else substitution_cost):
|
| 141 |
+
alignment_seq1.append(seq1[i - 1])
|
| 142 |
+
alignment_seq2.append(seq2[j - 1])
|
| 143 |
+
i -= 1
|
| 144 |
+
j -= 1
|
| 145 |
+
elif i > 0 and dp[i][j] == dp[i - 1][j] + gap_penalty:
|
| 146 |
+
alignment_seq1.append(seq1[i - 1])
|
| 147 |
+
alignment_seq2.append('-')
|
| 148 |
+
i -= 1
|
| 149 |
+
else:
|
| 150 |
+
alignment_seq1.append('-')
|
| 151 |
+
alignment_seq2.append(seq2[j - 1])
|
| 152 |
+
j -= 1
|
| 153 |
+
|
| 154 |
+
return alignment_seq1[::-1], alignment_seq2[::-1]
|
| 155 |
+
|
| 156 |
+
# Align each word pair
|
| 157 |
+
alignment = []
|
| 158 |
+
for truth_word, uttered_word in zip(truth_words, uttered_words):
|
| 159 |
+
aligned_truth, aligned_uttered = align_two_sequences(truth_word, uttered_word)
|
| 160 |
+
alignment.append((aligned_truth, aligned_uttered))
|
| 161 |
+
|
| 162 |
+
return alignment
|
| 163 |
+
|
| 164 |
+
def generate_phoneme_labels(data):
|
| 165 |
+
"""
|
| 166 |
+
Generate phoneme labels for comparison of expected and uttered phonemes.
|
| 167 |
+
|
| 168 |
+
Parameters:
|
| 169 |
+
data (list of tuples): Each tuple contains (expected phonemes, uttered phonemes).
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
list of tuples: Each tuple contains (phonemes, labels).
|
| 173 |
+
Phonemes are from the expected list, and labels are binary (0: correct, 1: incorrect).
|
| 174 |
+
"""
|
| 175 |
+
results = []
|
| 176 |
+
for expected, uttered in data:
|
| 177 |
+
labels = [
|
| 178 |
+
0 if exp == utt else 1
|
| 179 |
+
for exp, utt in zip(expected, uttered)
|
| 180 |
+
]
|
| 181 |
+
results.append((expected, labels))
|
| 182 |
+
return results
|
| 183 |
+
|
| 184 |
+
def convert_words_to_phonemes(words, cmu_dict):
|
| 185 |
+
phonemes = []
|
| 186 |
+
for word in words:
|
| 187 |
+
if word in cmu_dict:
|
| 188 |
+
phonemes.extend(cmu_dict[word][0]) # Use the first phoneme representation
|
| 189 |
+
else:
|
| 190 |
+
phonemes.append('<UNK>') # Append 'UNK' for unknown words
|
| 191 |
+
return phonemes
|
| 192 |
+
|
| 193 |
+
# health check
|
| 194 |
+
@app.get("/")
|
| 195 |
+
def home():
|
| 196 |
+
return "Healthy bro!"
|
| 197 |
+
|
| 198 |
+
# taking in both audio and transcript from the user
|
| 199 |
+
@app.post("/predict")
|
| 200 |
+
async def predict(audio: UploadFile, transcript: str = Form(...)):
|
| 201 |
+
"""
|
| 202 |
+
Predict phoneme labels from uploaded audio and provided transcript.
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
audio (UploadFile): Uploaded audio file (WAV/MP3).
|
| 206 |
+
transcript (str): Ground truth transcript.
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
JSONResponse: Contains phoneme labels.
|
| 210 |
+
"""
|
| 211 |
+
logging.info("Received prediction request!")
|
| 212 |
+
|
| 213 |
+
# Validate file extension
|
| 214 |
+
allowed_extensions = {"wav", "mp3"}
|
| 215 |
+
filename = audio.filename.lower()
|
| 216 |
+
|
| 217 |
+
if not filename.endswith(tuple(allowed_extensions)):
|
| 218 |
+
raise HTTPException(
|
| 219 |
+
status_code=400,
|
| 220 |
+
detail="Invalid file type. Only WAV and MP3 files are supported.",
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Load and preprocess the audio
|
| 224 |
+
try:
|
| 225 |
+
audio_bytes = BytesIO(await audio.read())
|
| 226 |
+
audio_input, sr = librosa.load(audio_bytes, sr=16000)
|
| 227 |
+
input_values = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
|
| 228 |
+
input_values = input_values.to(device)
|
| 229 |
+
|
| 230 |
+
# Perform inference
|
| 231 |
+
with torch.no_grad():
|
| 232 |
+
logits = model(input_values).logits
|
| 233 |
+
|
| 234 |
+
# Decode the phonemes
|
| 235 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 236 |
+
uttured_transcript = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 237 |
+
|
| 238 |
+
# Convert uttered IPA into SAMPA (for comparison)
|
| 239 |
+
uttured_phons = convert_ipa_to_arpabet(uttured_transcript.split())
|
| 240 |
+
|
| 241 |
+
# Convert ground truth text into SAMPA (for comparison) and remove stress markers
|
| 242 |
+
trans_phons = [convert_words_to_phonemes([word], cmu) for word in transcript.split()]
|
| 243 |
+
cleaned_trans_phons = remove_numbers_from_phonemes(trans_phons)
|
| 244 |
+
|
| 245 |
+
# Generate labels
|
| 246 |
+
alignment = align_phoneme_sequences(cleaned_trans_phons, uttured_phons)
|
| 247 |
+
phoneme_labels = generate_phoneme_labels(alignment)
|
| 248 |
+
|
| 249 |
+
return JSONResponse(content={"phoneme_labels": phoneme_labels})
|
| 250 |
+
|
| 251 |
+
except Exception as e:
|
| 252 |
+
logging.error(f"Error during prediction: {e}")
|
| 253 |
+
raise HTTPException(status_code=500, detail="An error occurred during processing.")
|
| 254 |
+
|
| 255 |
+
if __name__ == '__main__':
|
| 256 |
+
port = os.environ.get("PORT", 10000) # Default to 10000 if PORT is not set
|
| 257 |
+
logging.info(f"Starting server on PORT {port}")
|
| 258 |
+
uvicorn.run("app:app", host="0.0.0.0", port=int(port), log_level="info")
|
inference.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import librosa
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 5 |
+
import re
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cmudict
|
| 8 |
+
|
| 9 |
+
# Load the processor and model
|
| 10 |
+
MODEL_NAME = "mrrubino/wav2vec2-large-xlsr-53-l2-arctic-phoneme" # wav2vec based phoneme trascriber trained on L2-ARTIC
|
| 11 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 12 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# Check device availability
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
model.to(device)
|
| 18 |
+
|
| 19 |
+
def load_audio(audio_path, target_sr=16000):
|
| 20 |
+
"""Load an audio file and resample it to 16kHz."""
|
| 21 |
+
audio, sr = librosa.load(audio_path, sr=target_sr)
|
| 22 |
+
return audio
|
| 23 |
+
|
| 24 |
+
# Original ARPAbet to IPA mapping from SoapBox Labs
|
| 25 |
+
arpabet_to_ipa = {
|
| 26 |
+
"AA": "a", "AE": "æ", "AH": "ʌ", "AO": "ɔ", "AW": "aʊ", "AY": "aɪ",
|
| 27 |
+
"EH": "ɛ", "ER": "ɚ", "EY": "eɪ", "IH": "ɪ", "IY": "i", "OW": "oʊ",
|
| 28 |
+
"OY": "ɔɪ", "UH": "ʊ", "UW": "u", "B": "b", "CH": "t͡ʃ", "D": "d",
|
| 29 |
+
"DH": "ð", "F": "f", "G": "ɡ", "HH": "h", "JH": "dʒ", "K": "k",
|
| 30 |
+
"L": "l", "M": "m", "N": "n", "NG": "ŋ", "P": "p", "R": "ɹ",
|
| 31 |
+
"S": "s", "SH": "ʃ", "T": "t", "TH": "θ", "V": "v", "W": "w",
|
| 32 |
+
"Y": "j", "Z": "z", "ZH": "ʒ"
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Invert the dictionary to map IPA to ARPAbet
|
| 36 |
+
ipa_to_arpabet = {v: k for k, v in arpabet_to_ipa.items()}
|
| 37 |
+
|
| 38 |
+
def convert_ipa_to_arpabet(ipa_words):
|
| 39 |
+
"""
|
| 40 |
+
Convert a list of IPA words (strings of concatenated phonemes) to ARPAbet words.
|
| 41 |
+
|
| 42 |
+
:param ipa_words: List of IPA words where each word is a string of concatenated phonemes.
|
| 43 |
+
:return: List of lists, where each inner list contains ARPAbet phonemes for a word.
|
| 44 |
+
"""
|
| 45 |
+
arpabet_words = []
|
| 46 |
+
for word in ipa_words:
|
| 47 |
+
# Break the word into phonemes
|
| 48 |
+
phonemes = [] # Collect matched phonemes
|
| 49 |
+
i = 0
|
| 50 |
+
while i < len(word):
|
| 51 |
+
matched = False
|
| 52 |
+
# Match multi-character IPA phonemes first
|
| 53 |
+
for ipa_phoneme in sorted(ipa_to_arpabet.keys(), key=len, reverse=True):
|
| 54 |
+
if word[i:].startswith(ipa_phoneme):
|
| 55 |
+
phonemes.append(ipa_to_arpabet[ipa_phoneme])
|
| 56 |
+
i += len(ipa_phoneme)
|
| 57 |
+
matched = True
|
| 58 |
+
break
|
| 59 |
+
# If no match, add an unknown marker and move forward
|
| 60 |
+
if not matched:
|
| 61 |
+
phonemes.append("<UNK>")
|
| 62 |
+
i += 1
|
| 63 |
+
# Append the list of phonemes for the word
|
| 64 |
+
arpabet_words.append(phonemes)
|
| 65 |
+
return arpabet_words
|
| 66 |
+
|
| 67 |
+
def remove_numbers_from_phonemes(phon_list):
|
| 68 |
+
"""
|
| 69 |
+
Remove all numbers from phonemes in a nested list.
|
| 70 |
+
|
| 71 |
+
Parameters:
|
| 72 |
+
phon_list (list of lists): Nested list of phonemes.
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
list of lists: Updated nested list with numbers removed from phonemes.
|
| 76 |
+
"""
|
| 77 |
+
cleaned_phon_list = []
|
| 78 |
+
for word_phonemes in phon_list:
|
| 79 |
+
cleaned_word = [re.sub(r'\d', '', phoneme) for phoneme in word_phonemes]
|
| 80 |
+
cleaned_phon_list.append(cleaned_word)
|
| 81 |
+
return cleaned_phon_list
|
| 82 |
+
|
| 83 |
+
def align_phoneme_sequences(truth_words, uttered_words, gap_penalty=1, substitution_cost=1):
|
| 84 |
+
"""
|
| 85 |
+
Align phoneme sequences separated by words.
|
| 86 |
+
|
| 87 |
+
Parameters:
|
| 88 |
+
truth_words (list of lists): Ground truth phoneme sequences grouped by words.
|
| 89 |
+
uttered_words (list of lists): Uttered phoneme sequences grouped by words.
|
| 90 |
+
gap_penalty (int): Penalty for gaps.
|
| 91 |
+
substitution_cost (int): Cost for substitutions.
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
alignment (list of tuples): Aligned phoneme sequences with '-' for gaps.
|
| 95 |
+
"""
|
| 96 |
+
def align_two_sequences(seq1, seq2):
|
| 97 |
+
"""
|
| 98 |
+
Align two sequences using dynamic programming.
|
| 99 |
+
"""
|
| 100 |
+
n = len(seq1)
|
| 101 |
+
m = len(seq2)
|
| 102 |
+
dp = np.zeros((n + 1, m + 1))
|
| 103 |
+
|
| 104 |
+
# Initialize DP table
|
| 105 |
+
for i in range(n + 1):
|
| 106 |
+
dp[i][0] = i * gap_penalty
|
| 107 |
+
for j in range(m + 1):
|
| 108 |
+
dp[0][j] = j * gap_penalty
|
| 109 |
+
|
| 110 |
+
# Fill DP table
|
| 111 |
+
for i in range(1, n + 1):
|
| 112 |
+
for j in range(1, m + 1):
|
| 113 |
+
match_cost = 0 if seq1[i - 1] == seq2[j - 1] else substitution_cost
|
| 114 |
+
dp[i][j] = min(
|
| 115 |
+
dp[i - 1][j - 1] + match_cost, # Match or substitution
|
| 116 |
+
dp[i - 1][j] + gap_penalty, # Deletion
|
| 117 |
+
dp[i][j - 1] + gap_penalty # Insertion
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Traceback to find alignment
|
| 121 |
+
alignment_seq1 = []
|
| 122 |
+
alignment_seq2 = []
|
| 123 |
+
i, j = n, m
|
| 124 |
+
while i > 0 or j > 0:
|
| 125 |
+
if i > 0 and j > 0 and dp[i][j] == dp[i - 1][j - 1] + (0 if seq1[i - 1] == seq2[j - 1] else substitution_cost):
|
| 126 |
+
alignment_seq1.append(seq1[i - 1])
|
| 127 |
+
alignment_seq2.append(seq2[j - 1])
|
| 128 |
+
i -= 1
|
| 129 |
+
j -= 1
|
| 130 |
+
elif i > 0 and dp[i][j] == dp[i - 1][j] + gap_penalty:
|
| 131 |
+
alignment_seq1.append(seq1[i - 1])
|
| 132 |
+
alignment_seq2.append('-')
|
| 133 |
+
i -= 1
|
| 134 |
+
else:
|
| 135 |
+
alignment_seq1.append('-')
|
| 136 |
+
alignment_seq2.append(seq2[j - 1])
|
| 137 |
+
j -= 1
|
| 138 |
+
|
| 139 |
+
return alignment_seq1[::-1], alignment_seq2[::-1]
|
| 140 |
+
|
| 141 |
+
# Align each word pair
|
| 142 |
+
alignment = []
|
| 143 |
+
for truth_word, uttered_word in zip(truth_words, uttered_words):
|
| 144 |
+
aligned_truth, aligned_uttered = align_two_sequences(truth_word, uttered_word)
|
| 145 |
+
alignment.append((aligned_truth, aligned_uttered))
|
| 146 |
+
|
| 147 |
+
return alignment
|
| 148 |
+
|
| 149 |
+
def generate_phoneme_labels(data):
|
| 150 |
+
"""
|
| 151 |
+
Generate phoneme labels for comparison of expected and uttered phonemes.
|
| 152 |
+
|
| 153 |
+
Parameters:
|
| 154 |
+
data (list of tuples): Each tuple contains (expected phonemes, uttered phonemes).
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
list of tuples: Each tuple contains (phonemes, labels).
|
| 158 |
+
Phonemes are from the expected list, and labels are binary (0: correct, 1: incorrect).
|
| 159 |
+
"""
|
| 160 |
+
results = []
|
| 161 |
+
for expected, uttered in data:
|
| 162 |
+
labels = [
|
| 163 |
+
0 if exp == utt else 1
|
| 164 |
+
for exp, utt in zip(expected, uttered)
|
| 165 |
+
]
|
| 166 |
+
results.append((expected, labels))
|
| 167 |
+
return results
|
| 168 |
+
|
| 169 |
+
def convert_words_to_phonemes(words, cmu_dict):
|
| 170 |
+
phonemes = []
|
| 171 |
+
for word in words:
|
| 172 |
+
if word in cmu_dict:
|
| 173 |
+
phonemes.extend(cmu_dict[word][0]) # Use the first phoneme representation
|
| 174 |
+
else:
|
| 175 |
+
phonemes.append('<UNK>') # Append 'UNK' for unknown words
|
| 176 |
+
return phonemes
|
| 177 |
+
|
| 178 |
+
# RUN
|
| 179 |
+
|
| 180 |
+
def predict():
|
| 181 |
+
cmu = cmudict.dict()
|
| 182 |
+
|
| 183 |
+
# Path to test audio file
|
| 184 |
+
audio_path = '/content/drive/MyDrive/Test Audio/test5-good.m4a' # Replace with your audio file path
|
| 185 |
+
|
| 186 |
+
# Define the script
|
| 187 |
+
transcript = "the person that sat on the floor is punched"
|
| 188 |
+
|
| 189 |
+
# Load audio and normalize
|
| 190 |
+
audio_input = load_audio(audio_path)
|
| 191 |
+
input_values = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
|
| 192 |
+
input_values = input_values.to(device)
|
| 193 |
+
|
| 194 |
+
# Step 3: Perform inference
|
| 195 |
+
with torch.no_grad():
|
| 196 |
+
logits = model(input_values).logits
|
| 197 |
+
|
| 198 |
+
# Step 4: Decode the phonemes
|
| 199 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 200 |
+
uttured_transcript = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 201 |
+
|
| 202 |
+
# convert uttered ipa into SAMPA (for comparison)
|
| 203 |
+
uttured_phons = convert_ipa_to_arpabet(uttured_transcript.split())
|
| 204 |
+
|
| 205 |
+
# convert ground truth text into SAMPA (for comparison), and remove (ignore) stress markers (may upgrade to evaluate stress also later)
|
| 206 |
+
trans_phons = [convert_words_to_phonemes([word], cmu) for word in transcript.split()]
|
| 207 |
+
cleaned_trans_phons = remove_numbers_from_phonemes(trans_phons)
|
| 208 |
+
|
| 209 |
+
# Generate labels
|
| 210 |
+
alignment = align_phoneme_sequences(cleaned_trans_phons, uttured_phons)
|
| 211 |
+
phoneme_labels = generate_phoneme_labels(alignment)
|
| 212 |
+
|
| 213 |
+
print(phoneme_labels)
|
| 214 |
+
return phoneme_labels
|
notebook-inference.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
Binary file (542 Bytes). View file
|
|
|