Spaces:
Build error
Build error
Minor changes
Browse files
app.py
CHANGED
@@ -29,20 +29,28 @@ structure_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/struct
|
|
29 |
|
30 |
imgsz = 640
|
31 |
|
32 |
-
detection_class_names = ['table', 'table rotated']
|
33 |
structure_class_names = [
|
34 |
'table', 'table column', 'table row', 'table column header',
|
35 |
'table projected row header', 'table spanning cell', 'no object'
|
36 |
]
|
|
|
|
|
37 |
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
structure_class_thresholds = {
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
}
|
47 |
|
48 |
|
@@ -84,6 +92,9 @@ def crop_image(pil_img, detection_result, padding=30):
|
|
84 |
w = result[2]
|
85 |
h = result[3]
|
86 |
|
|
|
|
|
|
|
87 |
x1 = int((min_x - w / 2) * width)
|
88 |
y1 = int((min_y - h / 2) * height)
|
89 |
x2 = int((min_x + w / 2) * width)
|
@@ -97,7 +108,7 @@ def crop_image(pil_img, detection_result, padding=30):
|
|
97 |
|
98 |
crop_image = image[y1_pad:y2_pad, x1_pad:x2_pad, :]
|
99 |
crop_image = cv_to_PIL(crop_image)
|
100 |
-
if class_id ==
|
101 |
crop_image = crop_image.rotate(270, expand=True)
|
102 |
|
103 |
crop_images.append(crop_image)
|
@@ -180,17 +191,49 @@ def convert_stucture(page_tokens, pil_img, structure_result):
|
|
180 |
return table_structures, cells, confidence_score
|
181 |
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
def visualize_ocr(pil_img, ocr_result):
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
|
196 |
def get_bbox_decorations(data_type, label):
|
@@ -231,6 +274,9 @@ def visualize_structure(pil_img, structure_result):
|
|
231 |
w = result[2]
|
232 |
h = result[3]
|
233 |
|
|
|
|
|
|
|
234 |
x1 = int((min_x - w / 2) * width)
|
235 |
y1 = int((min_y - h / 2) * height)
|
236 |
x2 = int((min_x + w / 2) * width)
|
@@ -238,35 +284,31 @@ def visualize_structure(pil_img, structure_result):
|
|
238 |
# print(x1, y1, x2, y2)
|
239 |
bbox = [x1, y1, x2, y2]
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
linewidth=linewidth,
|
261 |
-
edgecolor=color, facecolor='none',
|
262 |
-
linestyle="--")
|
263 |
-
ax.add_patch(rect)
|
264 |
|
265 |
plt.xticks([], [])
|
266 |
plt.yticks([], [])
|
267 |
|
268 |
legend_elements = []
|
269 |
-
for class_name in structure_class_names:
|
270 |
color, alpha, linewidth, hatch = get_bbox_decorations('recognition', structure_class_map[class_name])
|
271 |
legend_elements.append(
|
272 |
Patch(facecolor=color, edgecolor=color, label=class_name, hatch=hatch, alpha=alpha)
|
@@ -506,10 +548,7 @@ def cells_to_excel(cells, file_path):
|
|
506 |
workbook = xlsxwriter.Workbook(file_path)
|
507 |
|
508 |
cell_format = workbook.add_format(
|
509 |
-
{
|
510 |
-
'align': 'center',
|
511 |
-
'valign': 'vcenter',
|
512 |
-
}
|
513 |
)
|
514 |
|
515 |
worksheet = workbook.add_worksheet(name='Table')
|
@@ -573,33 +612,35 @@ def main():
|
|
573 |
with tabs[1]:
|
574 |
st.header('Table Structure Recognition')
|
575 |
|
576 |
-
str_cols = st.columns(
|
577 |
str_cols[0].subheader('Table image')
|
578 |
str_cols[1].subheader('OCR result')
|
579 |
str_cols[2].subheader('Structure result')
|
580 |
str_cols[3].subheader('Cells result')
|
581 |
|
582 |
for i, img in enumerate(crop_images):
|
|
|
|
|
|
|
|
|
|
|
583 |
ocr_result = ocr(img)
|
|
|
|
|
|
|
584 |
structure_result = table_structure(img)
|
|
|
|
|
|
|
585 |
table_structures, cells, confidence_score = convert_stucture(ocr_result, img, structure_result)
|
586 |
cells = extract_text_from_cells(cells)
|
587 |
-
all_cells.append(cells)
|
588 |
-
html_result = cells_to_html(cells)
|
589 |
-
#df, csv_result = cells_to_csv(cells)
|
590 |
-
#print(df)
|
591 |
-
|
592 |
-
vis_ocr_img = visualize_ocr(img, ocr_result)
|
593 |
-
vis_str_img = visualize_structure(img, structure_result)
|
594 |
vis_cells_img = visualize_cells(img, cells)
|
595 |
-
|
596 |
-
str_cols[0].image(img)
|
597 |
-
str_cols[1].image(vis_ocr_img)
|
598 |
-
str_cols[2].image(vis_str_img)
|
599 |
str_cols[3].image(vis_cells_img)
|
600 |
|
601 |
-
|
602 |
-
|
|
|
|
|
603 |
|
604 |
with tabs[2]:
|
605 |
st.header('Extracted Table(s)')
|
@@ -621,6 +662,10 @@ def main():
|
|
621 |
file_name=f'output_{idx}.xlsx',
|
622 |
)
|
623 |
|
|
|
|
|
|
|
|
|
624 |
|
625 |
if __name__ == '__main__':
|
626 |
main()
|
|
|
29 |
|
30 |
imgsz = 640
|
31 |
|
32 |
+
detection_class_names = ['table', 'table rotated', 'no object']
|
33 |
structure_class_names = [
|
34 |
'table', 'table column', 'table row', 'table column header',
|
35 |
'table projected row header', 'table spanning cell', 'no object'
|
36 |
]
|
37 |
+
|
38 |
+
detection_class_map = {k: v for v, k in enumerate(detection_class_names)}
|
39 |
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
|
40 |
+
|
41 |
+
detection_class_thresholds = {
|
42 |
+
'table': 0.5,
|
43 |
+
'table rotated': 0.5,
|
44 |
+
'no object': 10
|
45 |
+
}
|
46 |
structure_class_thresholds = {
|
47 |
+
'table': 0.42,
|
48 |
+
'table column': 0.56,
|
49 |
+
'table row': 0.5,
|
50 |
+
'table column header': 0.38,
|
51 |
+
'table projected row header': 0.27,
|
52 |
+
'table spanning cell': 0.4,
|
53 |
+
'no object': 10
|
54 |
}
|
55 |
|
56 |
|
|
|
92 |
w = result[2]
|
93 |
h = result[3]
|
94 |
|
95 |
+
if score < detection_class_thresholds[detection_class_names[class_id]]:
|
96 |
+
continue
|
97 |
+
|
98 |
x1 = int((min_x - w / 2) * width)
|
99 |
y1 = int((min_y - h / 2) * height)
|
100 |
x2 = int((min_x + w / 2) * width)
|
|
|
108 |
|
109 |
crop_image = image[y1_pad:y2_pad, x1_pad:x2_pad, :]
|
110 |
crop_image = cv_to_PIL(crop_image)
|
111 |
+
if detection_class_names[class_id] == 'table rotated':
|
112 |
crop_image = crop_image.rotate(270, expand=True)
|
113 |
|
114 |
crop_images.append(crop_image)
|
|
|
191 |
return table_structures, cells, confidence_score
|
192 |
|
193 |
|
194 |
+
def visualize_image(pil_img):
|
195 |
+
plt.imshow(pil_img, interpolation='lanczos')
|
196 |
+
plt.gcf().set_size_inches(10, 10)
|
197 |
+
plt.axis('off')
|
198 |
+
img_buf = io.BytesIO()
|
199 |
+
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
|
200 |
+
plt.close()
|
201 |
+
return PIL.Image.open(img_buf)
|
202 |
+
|
203 |
+
|
204 |
def visualize_ocr(pil_img, ocr_result):
|
205 |
+
plt.imshow(pil_img, interpolation='lanczos')
|
206 |
+
plt.gcf().set_size_inches(20, 20)
|
207 |
+
ax = plt.gca()
|
208 |
+
|
209 |
+
for i, result in enumerate(ocr_result):
|
210 |
+
bbox = result['bbox']
|
211 |
+
text = result['text']
|
212 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=2, edgecolor='red', facecolor='none', linestyle="-")
|
213 |
+
ax.add_patch(rect)
|
214 |
+
ax.text(bbox[0], bbox[3], text, horizontalalignment='left', verticalalignment='bottom', transform=ax.transAxes, color='blue')
|
215 |
+
|
216 |
+
plt.xticks([], [])
|
217 |
+
plt.yticks([], [])
|
218 |
+
|
219 |
+
plt.gcf().set_size_inches(10, 10)
|
220 |
+
plt.axis('off')
|
221 |
+
img_buf = io.BytesIO()
|
222 |
+
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
|
223 |
+
plt.close()
|
224 |
+
|
225 |
+
return PIL.Image.open(img_buf)
|
226 |
+
|
227 |
+
# image = PIL_to_cv(pil_img)
|
228 |
+
# for i, res in enumerate(ocr_result):
|
229 |
+
# bbox = res['bbox']
|
230 |
+
# x1 = int(bbox[0])
|
231 |
+
# y1 = int(bbox[1])
|
232 |
+
# x2 = int(bbox[2])
|
233 |
+
# y2 = int(bbox[3])
|
234 |
+
# cv2.rectangle(image, (x1, y1), (x2, y2), color=(255, 0, 0))
|
235 |
+
# cv2.putText(image, res['text'], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(0, 0, 255))
|
236 |
+
# return cv_to_PIL(image)
|
237 |
|
238 |
|
239 |
def get_bbox_decorations(data_type, label):
|
|
|
274 |
w = result[2]
|
275 |
h = result[3]
|
276 |
|
277 |
+
if score < structure_class_thresholds[structure_class_names[class_id]]:
|
278 |
+
continue
|
279 |
+
|
280 |
x1 = int((min_x - w / 2) * width)
|
281 |
y1 = int((min_y - h / 2) * height)
|
282 |
x2 = int((min_x + w / 2) * width)
|
|
|
284 |
# print(x1, y1, x2, y2)
|
285 |
bbox = [x1, y1, x2, y2]
|
286 |
|
287 |
+
color, alpha, linewidth, hatch = get_bbox_decorations('recognition', class_id)
|
288 |
+
# Fill
|
289 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
|
290 |
+
linewidth=linewidth, alpha=alpha,
|
291 |
+
edgecolor='none',facecolor=color,
|
292 |
+
linestyle=None)
|
293 |
+
ax.add_patch(rect)
|
294 |
+
# Hatch
|
295 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
|
296 |
+
linewidth=1, alpha=0.4,
|
297 |
+
edgecolor=color, facecolor='none',
|
298 |
+
linestyle='--',hatch=hatch)
|
299 |
+
ax.add_patch(rect)
|
300 |
+
# Edge
|
301 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
|
302 |
+
linewidth=linewidth,
|
303 |
+
edgecolor=color, facecolor='none',
|
304 |
+
linestyle="--")
|
305 |
+
ax.add_patch(rect)
|
|
|
|
|
|
|
|
|
306 |
|
307 |
plt.xticks([], [])
|
308 |
plt.yticks([], [])
|
309 |
|
310 |
legend_elements = []
|
311 |
+
for class_name in structure_class_names[:-1]:
|
312 |
color, alpha, linewidth, hatch = get_bbox_decorations('recognition', structure_class_map[class_name])
|
313 |
legend_elements.append(
|
314 |
Patch(facecolor=color, edgecolor=color, label=class_name, hatch=hatch, alpha=alpha)
|
|
|
548 |
workbook = xlsxwriter.Workbook(file_path)
|
549 |
|
550 |
cell_format = workbook.add_format(
|
551 |
+
{'align': 'center', 'valign': 'vcenter'}
|
|
|
|
|
|
|
552 |
)
|
553 |
|
554 |
worksheet = workbook.add_worksheet(name='Table')
|
|
|
612 |
with tabs[1]:
|
613 |
st.header('Table Structure Recognition')
|
614 |
|
615 |
+
str_cols = st.columns(4)
|
616 |
str_cols[0].subheader('Table image')
|
617 |
str_cols[1].subheader('OCR result')
|
618 |
str_cols[2].subheader('Structure result')
|
619 |
str_cols[3].subheader('Cells result')
|
620 |
|
621 |
for i, img in enumerate(crop_images):
|
622 |
+
str_cols = st.columns(4)
|
623 |
+
|
624 |
+
vis_img = visualize_image(img)
|
625 |
+
str_cols[0].image(vis_img)
|
626 |
+
|
627 |
ocr_result = ocr(img)
|
628 |
+
vis_ocr_img = visualize_ocr(img, ocr_result)
|
629 |
+
str_cols[1].image(vis_ocr_img)
|
630 |
+
|
631 |
structure_result = table_structure(img)
|
632 |
+
vis_str_img = visualize_structure(img, structure_result)
|
633 |
+
str_cols[2].image(vis_str_img)
|
634 |
+
|
635 |
table_structures, cells, confidence_score = convert_stucture(ocr_result, img, structure_result)
|
636 |
cells = extract_text_from_cells(cells)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
637 |
vis_cells_img = visualize_cells(img, cells)
|
|
|
|
|
|
|
|
|
638 |
str_cols[3].image(vis_cells_img)
|
639 |
|
640 |
+
all_cells.append(cells)
|
641 |
+
|
642 |
+
#df, csv_result = cells_to_csv(cells)
|
643 |
+
#print(df)
|
644 |
|
645 |
with tabs[2]:
|
646 |
st.header('Extracted Table(s)')
|
|
|
662 |
file_name=f'output_{idx}.xlsx',
|
663 |
)
|
664 |
|
665 |
+
for idx, cells in enumerate(all_cells):
|
666 |
+
html_result = cells_to_html(cells)
|
667 |
+
st.subheader(f'HTML Table {idx + 1}')
|
668 |
+
st.markdown(html_result, unsafe_allow_html=True)
|
669 |
|
670 |
if __name__ == '__main__':
|
671 |
main()
|