Spaces:
Build error
Build error
Improve visualization
Browse files
app.py
CHANGED
@@ -4,10 +4,14 @@ import cv2
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import torch
|
|
|
7 |
# import sys
|
8 |
# import json
|
9 |
from collections import OrderedDict, defaultdict
|
10 |
import xml.etree.ElementTree as ET
|
|
|
|
|
|
|
11 |
from paddleocr import PaddleOCR
|
12 |
import pytesseract
|
13 |
from pytesseract import Output
|
@@ -80,10 +84,15 @@ def crop_image(pil_img, detection_result, padding=30):
|
|
80 |
x2 = min(width, int((min_x + w / 2) * width) + padding)
|
81 |
y2 = min(height, int((min_y + h / 2) * height) + padding)
|
82 |
# print(x1, y1, x2, y2)
|
|
|
83 |
crop_image = image[y1:y2, x1:x2, :]
|
84 |
-
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
return crop_images, cv_to_PIL(image)
|
89 |
|
@@ -169,15 +178,39 @@ def visualize_ocr(pil_img, ocr_result):
|
|
169 |
x2 = int(bbox[2])
|
170 |
y2 = int(bbox[3])
|
171 |
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
|
172 |
-
cv2.putText(image, res['text'], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.
|
173 |
return cv_to_PIL(image)
|
174 |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
def visualize_structure(pil_img, structure_result):
|
177 |
image = PIL_to_cv(pil_img)
|
178 |
width = image.shape[1]
|
179 |
height = image.shape[0]
|
180 |
# print(width, height)
|
|
|
|
|
|
|
|
|
181 |
for i, result in enumerate(structure_result):
|
182 |
class_id = int(result[5])
|
183 |
score = float(result[4])
|
@@ -191,24 +224,65 @@ def visualize_structure(pil_img, structure_result):
|
|
191 |
x2 = int((min_x + w / 2) * width)
|
192 |
y2 = int((min_y + h / 2) * height)
|
193 |
# print(x1, y1, x2, y2)
|
|
|
194 |
|
195 |
if score >= structure_class_thresholds[structure_class_names[class_id]]:
|
196 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
|
197 |
#cv2.putText(image, str(i)+'-'+str(class_id), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
|
202 |
def visualize_cells(pil_img, cells):
|
203 |
-
|
|
|
|
|
204 |
for i, cell in enumerate(cells):
|
205 |
bbox = cell['bbox']
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
|
214 |
def pytess(cell_pil_img):
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
+
import io
|
8 |
# import sys
|
9 |
# import json
|
10 |
from collections import OrderedDict, defaultdict
|
11 |
import xml.etree.ElementTree as ET
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import matplotlib.patches as patches
|
14 |
+
|
15 |
from paddleocr import PaddleOCR
|
16 |
import pytesseract
|
17 |
from pytesseract import Output
|
|
|
84 |
x2 = min(width, int((min_x + w / 2) * width) + padding)
|
85 |
y2 = min(height, int((min_y + h / 2) * height) + padding)
|
86 |
# print(x1, y1, x2, y2)
|
87 |
+
|
88 |
crop_image = image[y1:y2, x1:x2, :]
|
89 |
+
crop_image = cv_to_PIL(crop_image)
|
90 |
+
if class_id == 1: # table rotated
|
91 |
+
crop_image = crop_image.rotate(270, expand=True)
|
92 |
|
93 |
+
crop_images.append(crop_image)
|
94 |
+
|
95 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255))
|
96 |
|
97 |
return crop_images, cv_to_PIL(image)
|
98 |
|
|
|
178 |
x2 = int(bbox[2])
|
179 |
y2 = int(bbox[3])
|
180 |
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
|
181 |
+
cv2.putText(image, res['text'], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255, 0, 0))
|
182 |
return cv_to_PIL(image)
|
183 |
|
184 |
|
185 |
+
def get_bbox_decorations(data_type, label):
|
186 |
+
if label == 0:
|
187 |
+
if data_type == 'detection':
|
188 |
+
return 'brown', 0.05, 3, '//'
|
189 |
+
else:
|
190 |
+
return 'brown', 0, 3, None
|
191 |
+
elif label == 1:
|
192 |
+
return 'red', 0.15, 2, None
|
193 |
+
elif label == 2:
|
194 |
+
return 'blue', 0.15, 2, None
|
195 |
+
elif label == 3:
|
196 |
+
return 'magenta', 0.2, 3, '//'
|
197 |
+
elif label == 4:
|
198 |
+
return 'cyan', 0.2, 4, '//'
|
199 |
+
elif label == 5:
|
200 |
+
return 'green', 0.2, 4, '\\\\'
|
201 |
+
|
202 |
+
return 'gray', 0, 0, None
|
203 |
+
|
204 |
+
|
205 |
def visualize_structure(pil_img, structure_result):
|
206 |
image = PIL_to_cv(pil_img)
|
207 |
width = image.shape[1]
|
208 |
height = image.shape[0]
|
209 |
# print(width, height)
|
210 |
+
|
211 |
+
fig, ax = plt.subplots(1)
|
212 |
+
ax.imshow(pil_img, interpolation='lanczos')
|
213 |
+
|
214 |
for i, result in enumerate(structure_result):
|
215 |
class_id = int(result[5])
|
216 |
score = float(result[4])
|
|
|
224 |
x2 = int((min_x + w / 2) * width)
|
225 |
y2 = int((min_y + h / 2) * height)
|
226 |
# print(x1, y1, x2, y2)
|
227 |
+
bbox = [x1, y1, x2, y2]
|
228 |
|
229 |
if score >= structure_class_thresholds[structure_class_names[class_id]]:
|
230 |
+
#cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
|
231 |
#cv2.putText(image, str(i)+'-'+str(class_id), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
|
232 |
|
233 |
+
color, alpha, linewidth, hatch = get_bbox_decorations('recognition', class_id)
|
234 |
+
# Fill
|
235 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
|
236 |
+
linewidth=linewidth, alpha=alpha,
|
237 |
+
edgecolor='none',facecolor=color,
|
238 |
+
linestyle=None)
|
239 |
+
ax.add_patch(rect)
|
240 |
+
# Hatch
|
241 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
|
242 |
+
linewidth=1, alpha=0.4,
|
243 |
+
edgecolor=color,facecolor='none',
|
244 |
+
linestyle='--',hatch=hatch)
|
245 |
+
ax.add_patch(rect)
|
246 |
+
# Edge
|
247 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1],
|
248 |
+
linewidth=linewidth,
|
249 |
+
edgecolor=color,facecolor='none',
|
250 |
+
linestyle="--")
|
251 |
+
ax.add_patch(rect)
|
252 |
+
|
253 |
+
plt.axis('off')
|
254 |
+
img_buf = io.BytesIO()
|
255 |
+
plt.savefig(img_buf, bbox_inches='tight', dpi=100)
|
256 |
+
|
257 |
+
return PIL.Image.open(img_buf)
|
258 |
|
259 |
|
260 |
def visualize_cells(pil_img, cells):
|
261 |
+
fig, ax = plt.subplots(1)
|
262 |
+
ax.imshow(pil_img, interpolation='lanczos')
|
263 |
+
|
264 |
for i, cell in enumerate(cells):
|
265 |
bbox = cell['bbox']
|
266 |
+
if cell['header']:
|
267 |
+
alpha = 0.3
|
268 |
+
else:
|
269 |
+
alpha = 0.125
|
270 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=1,
|
271 |
+
edgecolor='none',facecolor="magenta", alpha=alpha)
|
272 |
+
ax.add_patch(rect)
|
273 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=1,
|
274 |
+
edgecolor="magenta",facecolor='none',linestyle="--",
|
275 |
+
alpha=0.08, hatch='///')
|
276 |
+
ax.add_patch(rect)
|
277 |
+
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=1,
|
278 |
+
edgecolor="magenta",facecolor='none',linestyle="--")
|
279 |
+
ax.add_patch(rect)
|
280 |
+
|
281 |
+
plt.axis('off')
|
282 |
+
img_buf = io.BytesIO()
|
283 |
+
plt.savefig(img_buf, bbox_inches='tight', dpi=100)
|
284 |
+
|
285 |
+
return PIL.Image.open(img_buf)
|
286 |
|
287 |
|
288 |
def pytess(cell_pil_img):
|