bmoxi_single_user / utils.py
HarshSanghavi's picture
Upload 6 files
5039b99 verified
raw
history blame
5.9 kB
import json
import time
from transformers import AutoTokenizer, AutoModel
from langchain_community.chat_models import ChatOpenAI
import pandas as pd
from config import settings
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferWindowMemory
from langchain.schema.runnable import RunnablePassthrough
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.agents import AgentExecutor
from tools import moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post, recommand_podcast, set_chatbot_name
from database_functions import get_chat_bot_name,get_chat_history, get_last_conversion, get_last_session, get_mood_data,use_tools
def get_mood_summary(user_id):
data = get_mood_data(user_id)
system_prompt = """You are an descripting assistant that provides the breif description of the user data which is related to their mood tracking activity. Properly descibe the reason for their mood.Avoid times and dates in description
Here is the user data: {data}"""
llm = ChatOpenAI(model=settings.OPENAI_MODEL,
openai_api_key=settings.OPENAI_KEY, temperature=0.7)
return llm.invoke(system_prompt.format(data=data)).content
def deanonymizer(input, anonymizer):
input = anonymizer.deanonymize(input)
map = anonymizer.deanonymizer_mapping
if map:
for k in map["PERSON"]:
names = k.split(" ")
for i in names:
input = input.replace(i, map["PERSON"][k])
return input
def get_last_session_summary(last_session_id, second_last_session_id):
conversation = get_last_conversion(last_session_id,second_last_session_id)
if conversation:
system_prompt = """ summerize whole conversation. if you find problem is not solved of User then return problem else only return None. nothing else.
conversation: {conversation}
summary:
"""
llm = ChatOpenAI(model=settings.OPENAI_MODEL,
openai_api_key=settings.OPENAI_KEY, temperature=0.0)
response = llm.invoke(system_prompt.format(conversation=conversation)).content
# print("********************************* PREVIOUS PROBLEM *******************************************")
# print(response)
return response
else:
return ""
def create_agent(user_id,is_first = False):
# print("get user Id**********************",user_id)
previous_session_id = get_last_session(user_id)
# print(previous_session_id)
if use_tools(previous_session_id["last_session_id"]):
tools = [moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post, recommand_podcast, set_chatbot_name]
else:
tools = [set_chatbot_name]
functions = [convert_to_openai_function(f) for f in tools]
model = ChatOpenAI(model_name=settings.OPENAI_MODEL,
openai_api_key=settings.OPENAI_KEY, frequency_penalty= 1, temperature=settings.TEMPERATURE).bind(functions=functions)
chat_bot_name = get_chat_bot_name(user_id)
# print("CHABT NAME", chat_bot_name)
extra_prompt = ""
previous_problem_summary = None
if is_first:
start = time.time()
mood_summary = get_mood_summary(user_id)
if previous_session_id['second_last_session_id']:
previous_problem_summary = get_last_session_summary(previous_session_id['last_session_id'], previous_session_id['second_last_session_id'])
print("**************************************** SUMMARY ***********************************************")
print(previous_problem_summary)
print("time require for mood summary: ",time.time()-start)
if previous_problem_summary.find('None') == -1:
extra_prompt = """ask user her previous problem is solved or not.use previous problem summary for framming the question. nothing else."""
else:
extra_prompt = """ Only use these templates to start conversation:-
1. Hey again! How's it going?
2. What's up today? Need ✨ Advice, ✨ a Mood Boost, ✨ a Chat, ✨ Resource Suggestions, ✨ App Features help? How can I help?"
use any one of the question for response based on your understanding not use anything else simply return one of these two only.
"""
prompt = ChatPromptTemplate.from_messages([("system", settings.SYSTEM_PROMPT.format(name = chat_bot_name, mood="", previous_summary=previous_problem_summary)+extra_prompt),
MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad")])
memory = ConversationBufferWindowMemory(memory_key="chat_history", chat_memory=get_chat_history(
previous_session_id['last_session_id']), return_messages=True, k=5)
# print("memory created")
chain = RunnablePassthrough.assign(agent_scratchpad=lambda x: format_to_openai_functions(x["intermediate_steps"])) | prompt | model | OpenAIFunctionsAgentOutputParser()
agent_executor = AgentExecutor(
agent=chain, tools=tools, memory=memory, verbose=True)
return agent_executor