Aaron Mueller commited on
Commit
4d561ee
·
1 Parent(s): cde984f

COLS for multimodal track

Browse files
Files changed (3) hide show
  1. app.py +2 -1
  2. src/display/utils.py +8 -0
  3. src/populate.py +1 -1
app.py CHANGED
@@ -17,6 +17,7 @@ from src.display.utils import (
17
  BENCHMARK_COLS,
18
  BENCHMARK_COLS_MULTIMODAL,
19
  COLS,
 
20
  EVAL_COLS,
21
  EVAL_TYPES,
22
  AutoEvalColumn,
@@ -48,7 +49,7 @@ except Exception:
48
 
49
 
50
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
51
- LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS_MULTIMODAL)
52
 
53
  (
54
  finished_eval_queue_df,
 
17
  BENCHMARK_COLS,
18
  BENCHMARK_COLS_MULTIMODAL,
19
  COLS,
20
+ COLS_MULTIMODAL,
21
  EVAL_COLS,
22
  EVAL_TYPES,
23
  AutoEvalColumn,
 
49
 
50
 
51
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
52
+ LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
53
 
54
  (
55
  finished_eval_queue_df,
src/display/utils.py CHANGED
@@ -22,18 +22,25 @@ class ColumnContent:
22
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
 
25
  # Init
26
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
27
  #Scores
28
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
 
29
  for task in Tasks:
30
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
 
 
31
  # Model information
32
  auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
33
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
 
 
34
 
35
  # We use make dataclass to dynamically fill the scores from Tasks
36
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
 
37
 
38
  ## For the queue columns in the submission tab
39
  @dataclass(frozen=True)
@@ -53,6 +60,7 @@ class ModelDetails:
53
 
54
  # Column selection
55
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
 
56
 
57
  EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
58
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
 
22
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
+ auto_eval_column_dict_multimodal = []
26
  # Init
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
  #Scores
29
  auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
+ auto_eval_column_dict_multimodal = auto_eval_column_dict
31
  for task in Tasks:
32
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
+ for task in TasksMultimodal:
34
+ auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
35
  # Model information
36
  auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
37
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
38
+ auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
39
+ auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
40
 
41
  # We use make dataclass to dynamically fill the scores from Tasks
42
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
43
+ AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True)
44
 
45
  ## For the queue columns in the submission tab
46
  @dataclass(frozen=True)
 
60
 
61
  # Column selection
62
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
63
+ COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden]
64
 
65
  EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
66
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
src/populate.py CHANGED
@@ -23,7 +23,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
23
  df = pd.DataFrame.from_records(all_data_json)
24
  print(df)
25
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
26
- df = df[benchmark_cols].round(decimals=1)
27
 
28
  # filter out if any of the benchmarks have not been produced
29
  df = df[has_no_nan_values(df, benchmark_cols)]
 
23
  df = pd.DataFrame.from_records(all_data_json)
24
  print(df)
25
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
26
+ df = df[cols].round(decimals=1)
27
 
28
  # filter out if any of the benchmarks have not been produced
29
  df = df[has_no_nan_values(df, benchmark_cols)]