AI_PICS
/
stable-diffusion-webui
/repositories
/generative-models
/scripts
/demo
/streamlit_helpers.py
import math | |
import os | |
from typing import List, Union | |
import numpy as np | |
import streamlit as st | |
import torch | |
from einops import rearrange, repeat | |
from imwatermark import WatermarkEncoder | |
from omegaconf import ListConfig, OmegaConf | |
from PIL import Image | |
from safetensors.torch import load_file as load_safetensors | |
from torch import autocast | |
from torchvision import transforms | |
from torchvision.utils import make_grid | |
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering | |
from sgm.modules.diffusionmodules.sampling import ( | |
DPMPP2MSampler, | |
DPMPP2SAncestralSampler, | |
EulerAncestralSampler, | |
EulerEDMSampler, | |
HeunEDMSampler, | |
LinearMultistepSampler, | |
) | |
from sgm.util import append_dims, instantiate_from_config | |
class WatermarkEmbedder: | |
def __init__(self, watermark): | |
self.watermark = watermark | |
self.num_bits = len(WATERMARK_BITS) | |
self.encoder = WatermarkEncoder() | |
self.encoder.set_watermark("bits", self.watermark) | |
def __call__(self, image: torch.Tensor): | |
""" | |
Adds a predefined watermark to the input image | |
Args: | |
image: ([N,] B, C, H, W) in range [0, 1] | |
Returns: | |
same as input but watermarked | |
""" | |
# watermarking libary expects input as cv2 BGR format | |
squeeze = len(image.shape) == 4 | |
if squeeze: | |
image = image[None, ...] | |
n = image.shape[0] | |
image_np = rearrange( | |
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c" | |
).numpy()[:, :, :, ::-1] | |
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255] | |
for k in range(image_np.shape[0]): | |
image_np[k] = self.encoder.encode(image_np[k], "dwtDct") | |
image = torch.from_numpy( | |
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n) | |
).to(image.device) | |
image = torch.clamp(image / 255, min=0.0, max=1.0) | |
if squeeze: | |
image = image[0] | |
return image | |
# A fixed 48-bit message that was choosen at random | |
# WATERMARK_MESSAGE = 0xB3EC907BB19E | |
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110 | |
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 | |
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] | |
embed_watemark = WatermarkEmbedder(WATERMARK_BITS) | |
def init_st(version_dict, load_ckpt=True, load_filter=True): | |
state = dict() | |
if not "model" in state: | |
config = version_dict["config"] | |
ckpt = version_dict["ckpt"] | |
config = OmegaConf.load(config) | |
model, msg = load_model_from_config(config, ckpt if load_ckpt else None) | |
state["msg"] = msg | |
state["model"] = model | |
state["ckpt"] = ckpt if load_ckpt else None | |
state["config"] = config | |
if load_filter: | |
state["filter"] = DeepFloydDataFiltering(verbose=False) | |
return state | |
def load_model(model): | |
model.cuda() | |
lowvram_mode = False | |
def set_lowvram_mode(mode): | |
global lowvram_mode | |
lowvram_mode = mode | |
def initial_model_load(model): | |
global lowvram_mode | |
if lowvram_mode: | |
model.model.half() | |
else: | |
model.cuda() | |
return model | |
def unload_model(model): | |
global lowvram_mode | |
if lowvram_mode: | |
model.cpu() | |
torch.cuda.empty_cache() | |
def load_model_from_config(config, ckpt=None, verbose=True): | |
model = instantiate_from_config(config.model) | |
if ckpt is not None: | |
print(f"Loading model from {ckpt}") | |
if ckpt.endswith("ckpt"): | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
global_step = pl_sd["global_step"] | |
st.info(f"loaded ckpt from global step {global_step}") | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
elif ckpt.endswith("safetensors"): | |
sd = load_safetensors(ckpt) | |
else: | |
raise NotImplementedError | |
msg = None | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
else: | |
msg = None | |
model = initial_model_load(model) | |
model.eval() | |
return model, msg | |
def get_unique_embedder_keys_from_conditioner(conditioner): | |
return list(set([x.input_key for x in conditioner.embedders])) | |
def init_embedder_options(keys, init_dict, prompt=None, negative_prompt=None): | |
# Hardcoded demo settings; might undergo some changes in the future | |
value_dict = {} | |
for key in keys: | |
if key == "txt": | |
if prompt is None: | |
prompt = st.text_input( | |
"Prompt", "A professional photograph of an astronaut riding a pig" | |
) | |
if negative_prompt is None: | |
negative_prompt = st.text_input("Negative prompt", "") | |
value_dict["prompt"] = prompt | |
value_dict["negative_prompt"] = negative_prompt | |
if key == "original_size_as_tuple": | |
orig_width = st.number_input( | |
"orig_width", | |
value=init_dict["orig_width"], | |
min_value=16, | |
) | |
orig_height = st.number_input( | |
"orig_height", | |
value=init_dict["orig_height"], | |
min_value=16, | |
) | |
value_dict["orig_width"] = orig_width | |
value_dict["orig_height"] = orig_height | |
if key == "crop_coords_top_left": | |
crop_coord_top = st.number_input("crop_coords_top", value=0, min_value=0) | |
crop_coord_left = st.number_input("crop_coords_left", value=0, min_value=0) | |
value_dict["crop_coords_top"] = crop_coord_top | |
value_dict["crop_coords_left"] = crop_coord_left | |
if key == "aesthetic_score": | |
value_dict["aesthetic_score"] = 6.0 | |
value_dict["negative_aesthetic_score"] = 2.5 | |
if key == "target_size_as_tuple": | |
value_dict["target_width"] = init_dict["target_width"] | |
value_dict["target_height"] = init_dict["target_height"] | |
return value_dict | |
def perform_save_locally(save_path, samples): | |
os.makedirs(os.path.join(save_path), exist_ok=True) | |
base_count = len(os.listdir(os.path.join(save_path))) | |
samples = embed_watemark(samples) | |
for sample in samples: | |
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c") | |
Image.fromarray(sample.astype(np.uint8)).save( | |
os.path.join(save_path, f"{base_count:09}.png") | |
) | |
base_count += 1 | |
def init_save_locally(_dir, init_value: bool = False): | |
save_locally = st.sidebar.checkbox("Save images locally", value=init_value) | |
if save_locally: | |
save_path = st.text_input("Save path", value=os.path.join(_dir, "samples")) | |
else: | |
save_path = None | |
return save_locally, save_path | |
class Img2ImgDiscretizationWrapper: | |
""" | |
wraps a discretizer, and prunes the sigmas | |
params: | |
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned) | |
""" | |
def __init__(self, discretization, strength: float = 1.0): | |
self.discretization = discretization | |
self.strength = strength | |
assert 0.0 <= self.strength <= 1.0 | |
def __call__(self, *args, **kwargs): | |
# sigmas start large first, and decrease then | |
sigmas = self.discretization(*args, **kwargs) | |
print(f"sigmas after discretization, before pruning img2img: ", sigmas) | |
sigmas = torch.flip(sigmas, (0,)) | |
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)] | |
print("prune index:", max(int(self.strength * len(sigmas)), 1)) | |
sigmas = torch.flip(sigmas, (0,)) | |
print(f"sigmas after pruning: ", sigmas) | |
return sigmas | |
class Txt2NoisyDiscretizationWrapper: | |
""" | |
wraps a discretizer, and prunes the sigmas | |
params: | |
strength: float between 0.0 and 1.0. 0.0 means full sampling (all sigmas are returned) | |
""" | |
def __init__(self, discretization, strength: float = 0.0, original_steps=None): | |
self.discretization = discretization | |
self.strength = strength | |
self.original_steps = original_steps | |
assert 0.0 <= self.strength <= 1.0 | |
def __call__(self, *args, **kwargs): | |
# sigmas start large first, and decrease then | |
sigmas = self.discretization(*args, **kwargs) | |
print(f"sigmas after discretization, before pruning img2img: ", sigmas) | |
sigmas = torch.flip(sigmas, (0,)) | |
if self.original_steps is None: | |
steps = len(sigmas) | |
else: | |
steps = self.original_steps + 1 | |
prune_index = max(min(int(self.strength * steps) - 1, steps - 1), 0) | |
sigmas = sigmas[prune_index:] | |
print("prune index:", prune_index) | |
sigmas = torch.flip(sigmas, (0,)) | |
print(f"sigmas after pruning: ", sigmas) | |
return sigmas | |
def get_guider(key): | |
guider = st.sidebar.selectbox( | |
f"Discretization #{key}", | |
[ | |
"VanillaCFG", | |
"IdentityGuider", | |
], | |
) | |
if guider == "IdentityGuider": | |
guider_config = { | |
"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider" | |
} | |
elif guider == "VanillaCFG": | |
scale = st.number_input( | |
f"cfg-scale #{key}", value=5.0, min_value=0.0, max_value=100.0 | |
) | |
thresholder = st.sidebar.selectbox( | |
f"Thresholder #{key}", | |
[ | |
"None", | |
], | |
) | |
if thresholder == "None": | |
dyn_thresh_config = { | |
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding" | |
} | |
else: | |
raise NotImplementedError | |
guider_config = { | |
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG", | |
"params": {"scale": scale, "dyn_thresh_config": dyn_thresh_config}, | |
} | |
else: | |
raise NotImplementedError | |
return guider_config | |
def init_sampling( | |
key=1, | |
img2img_strength=1.0, | |
specify_num_samples=True, | |
stage2strength=None, | |
): | |
num_rows, num_cols = 1, 1 | |
if specify_num_samples: | |
num_cols = st.number_input( | |
f"num cols #{key}", value=2, min_value=1, max_value=10 | |
) | |
steps = st.sidebar.number_input( | |
f"steps #{key}", value=40, min_value=1, max_value=1000 | |
) | |
sampler = st.sidebar.selectbox( | |
f"Sampler #{key}", | |
[ | |
"EulerEDMSampler", | |
"HeunEDMSampler", | |
"EulerAncestralSampler", | |
"DPMPP2SAncestralSampler", | |
"DPMPP2MSampler", | |
"LinearMultistepSampler", | |
], | |
0, | |
) | |
discretization = st.sidebar.selectbox( | |
f"Discretization #{key}", | |
[ | |
"LegacyDDPMDiscretization", | |
"EDMDiscretization", | |
], | |
) | |
discretization_config = get_discretization(discretization, key=key) | |
guider_config = get_guider(key=key) | |
sampler = get_sampler(sampler, steps, discretization_config, guider_config, key=key) | |
if img2img_strength < 1.0: | |
st.warning( | |
f"Wrapping {sampler.__class__.__name__} with Img2ImgDiscretizationWrapper" | |
) | |
sampler.discretization = Img2ImgDiscretizationWrapper( | |
sampler.discretization, strength=img2img_strength | |
) | |
if stage2strength is not None: | |
sampler.discretization = Txt2NoisyDiscretizationWrapper( | |
sampler.discretization, strength=stage2strength, original_steps=steps | |
) | |
return sampler, num_rows, num_cols | |
def get_discretization(discretization, key=1): | |
if discretization == "LegacyDDPMDiscretization": | |
discretization_config = { | |
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization", | |
} | |
elif discretization == "EDMDiscretization": | |
sigma_min = st.number_input(f"sigma_min #{key}", value=0.03) # 0.0292 | |
sigma_max = st.number_input(f"sigma_max #{key}", value=14.61) # 14.6146 | |
rho = st.number_input(f"rho #{key}", value=3.0) | |
discretization_config = { | |
"target": "sgm.modules.diffusionmodules.discretizer.EDMDiscretization", | |
"params": { | |
"sigma_min": sigma_min, | |
"sigma_max": sigma_max, | |
"rho": rho, | |
}, | |
} | |
return discretization_config | |
def get_sampler(sampler_name, steps, discretization_config, guider_config, key=1): | |
if sampler_name == "EulerEDMSampler" or sampler_name == "HeunEDMSampler": | |
s_churn = st.sidebar.number_input(f"s_churn #{key}", value=0.0, min_value=0.0) | |
s_tmin = st.sidebar.number_input(f"s_tmin #{key}", value=0.0, min_value=0.0) | |
s_tmax = st.sidebar.number_input(f"s_tmax #{key}", value=999.0, min_value=0.0) | |
s_noise = st.sidebar.number_input(f"s_noise #{key}", value=1.0, min_value=0.0) | |
if sampler_name == "EulerEDMSampler": | |
sampler = EulerEDMSampler( | |
num_steps=steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
s_churn=s_churn, | |
s_tmin=s_tmin, | |
s_tmax=s_tmax, | |
s_noise=s_noise, | |
verbose=True, | |
) | |
elif sampler_name == "HeunEDMSampler": | |
sampler = HeunEDMSampler( | |
num_steps=steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
s_churn=s_churn, | |
s_tmin=s_tmin, | |
s_tmax=s_tmax, | |
s_noise=s_noise, | |
verbose=True, | |
) | |
elif ( | |
sampler_name == "EulerAncestralSampler" | |
or sampler_name == "DPMPP2SAncestralSampler" | |
): | |
s_noise = st.sidebar.number_input("s_noise", value=1.0, min_value=0.0) | |
eta = st.sidebar.number_input("eta", value=1.0, min_value=0.0) | |
if sampler_name == "EulerAncestralSampler": | |
sampler = EulerAncestralSampler( | |
num_steps=steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
eta=eta, | |
s_noise=s_noise, | |
verbose=True, | |
) | |
elif sampler_name == "DPMPP2SAncestralSampler": | |
sampler = DPMPP2SAncestralSampler( | |
num_steps=steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
eta=eta, | |
s_noise=s_noise, | |
verbose=True, | |
) | |
elif sampler_name == "DPMPP2MSampler": | |
sampler = DPMPP2MSampler( | |
num_steps=steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
verbose=True, | |
) | |
elif sampler_name == "LinearMultistepSampler": | |
order = st.sidebar.number_input("order", value=4, min_value=1) | |
sampler = LinearMultistepSampler( | |
num_steps=steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
order=order, | |
verbose=True, | |
) | |
else: | |
raise ValueError(f"unknown sampler {sampler_name}!") | |
return sampler | |
def get_interactive_image(key=None) -> Image.Image: | |
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key) | |
if image is not None: | |
image = Image.open(image) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
return image | |
def load_img(display=True, key=None): | |
image = get_interactive_image(key=key) | |
if image is None: | |
return None | |
if display: | |
st.image(image) | |
w, h = image.size | |
print(f"loaded input image of size ({w}, {h})") | |
transform = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Lambda(lambda x: x * 2.0 - 1.0), | |
] | |
) | |
img = transform(image)[None, ...] | |
st.text(f"input min/max/mean: {img.min():.3f}/{img.max():.3f}/{img.mean():.3f}") | |
return img | |
def get_init_img(batch_size=1, key=None): | |
init_image = load_img(key=key).cuda() | |
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size) | |
return init_image | |
def do_sample( | |
model, | |
sampler, | |
value_dict, | |
num_samples, | |
H, | |
W, | |
C, | |
F, | |
force_uc_zero_embeddings: List = None, | |
batch2model_input: List = None, | |
return_latents=False, | |
filter=None, | |
): | |
if force_uc_zero_embeddings is None: | |
force_uc_zero_embeddings = [] | |
if batch2model_input is None: | |
batch2model_input = [] | |
st.text("Sampling") | |
outputs = st.empty() | |
precision_scope = autocast | |
with torch.no_grad(): | |
with precision_scope("cuda"): | |
with model.ema_scope(): | |
num_samples = [num_samples] | |
load_model(model.conditioner) | |
batch, batch_uc = get_batch( | |
get_unique_embedder_keys_from_conditioner(model.conditioner), | |
value_dict, | |
num_samples, | |
) | |
for key in batch: | |
if isinstance(batch[key], torch.Tensor): | |
print(key, batch[key].shape) | |
elif isinstance(batch[key], list): | |
print(key, [len(l) for l in batch[key]]) | |
else: | |
print(key, batch[key]) | |
c, uc = model.conditioner.get_unconditional_conditioning( | |
batch, | |
batch_uc=batch_uc, | |
force_uc_zero_embeddings=force_uc_zero_embeddings, | |
) | |
unload_model(model.conditioner) | |
for k in c: | |
if not k == "crossattn": | |
c[k], uc[k] = map( | |
lambda y: y[k][: math.prod(num_samples)].to("cuda"), (c, uc) | |
) | |
additional_model_inputs = {} | |
for k in batch2model_input: | |
additional_model_inputs[k] = batch[k] | |
shape = (math.prod(num_samples), C, H // F, W // F) | |
randn = torch.randn(shape).to("cuda") | |
def denoiser(input, sigma, c): | |
return model.denoiser( | |
model.model, input, sigma, c, **additional_model_inputs | |
) | |
load_model(model.denoiser) | |
load_model(model.model) | |
samples_z = sampler(denoiser, randn, cond=c, uc=uc) | |
unload_model(model.model) | |
unload_model(model.denoiser) | |
load_model(model.first_stage_model) | |
samples_x = model.decode_first_stage(samples_z) | |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) | |
unload_model(model.first_stage_model) | |
if filter is not None: | |
samples = filter(samples) | |
grid = torch.stack([samples]) | |
grid = rearrange(grid, "n b c h w -> (n h) (b w) c") | |
outputs.image(grid.cpu().numpy()) | |
if return_latents: | |
return samples, samples_z | |
return samples | |
def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"): | |
# Hardcoded demo setups; might undergo some changes in the future | |
batch = {} | |
batch_uc = {} | |
for key in keys: | |
if key == "txt": | |
batch["txt"] = ( | |
np.repeat([value_dict["prompt"]], repeats=math.prod(N)) | |
.reshape(N) | |
.tolist() | |
) | |
batch_uc["txt"] = ( | |
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N)) | |
.reshape(N) | |
.tolist() | |
) | |
elif key == "original_size_as_tuple": | |
batch["original_size_as_tuple"] = ( | |
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]]) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
elif key == "crop_coords_top_left": | |
batch["crop_coords_top_left"] = ( | |
torch.tensor( | |
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]] | |
) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
elif key == "aesthetic_score": | |
batch["aesthetic_score"] = ( | |
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1) | |
) | |
batch_uc["aesthetic_score"] = ( | |
torch.tensor([value_dict["negative_aesthetic_score"]]) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
elif key == "target_size_as_tuple": | |
batch["target_size_as_tuple"] = ( | |
torch.tensor([value_dict["target_height"], value_dict["target_width"]]) | |
.to(device) | |
.repeat(*N, 1) | |
) | |
else: | |
batch[key] = value_dict[key] | |
for key in batch.keys(): | |
if key not in batch_uc and isinstance(batch[key], torch.Tensor): | |
batch_uc[key] = torch.clone(batch[key]) | |
return batch, batch_uc | |
def do_img2img( | |
img, | |
model, | |
sampler, | |
value_dict, | |
num_samples, | |
force_uc_zero_embeddings=[], | |
additional_kwargs={}, | |
offset_noise_level: int = 0.0, | |
return_latents=False, | |
skip_encode=False, | |
filter=None, | |
add_noise=True, | |
): | |
st.text("Sampling") | |
outputs = st.empty() | |
precision_scope = autocast | |
with torch.no_grad(): | |
with precision_scope("cuda"): | |
with model.ema_scope(): | |
load_model(model.conditioner) | |
batch, batch_uc = get_batch( | |
get_unique_embedder_keys_from_conditioner(model.conditioner), | |
value_dict, | |
[num_samples], | |
) | |
c, uc = model.conditioner.get_unconditional_conditioning( | |
batch, | |
batch_uc=batch_uc, | |
force_uc_zero_embeddings=force_uc_zero_embeddings, | |
) | |
unload_model(model.conditioner) | |
for k in c: | |
c[k], uc[k] = map(lambda y: y[k][:num_samples].to("cuda"), (c, uc)) | |
for k in additional_kwargs: | |
c[k] = uc[k] = additional_kwargs[k] | |
if skip_encode: | |
z = img | |
else: | |
load_model(model.first_stage_model) | |
z = model.encode_first_stage(img) | |
unload_model(model.first_stage_model) | |
noise = torch.randn_like(z) | |
sigmas = sampler.discretization(sampler.num_steps).cuda() | |
sigma = sigmas[0] | |
st.info(f"all sigmas: {sigmas}") | |
st.info(f"noising sigma: {sigma}") | |
if offset_noise_level > 0.0: | |
noise = noise + offset_noise_level * append_dims( | |
torch.randn(z.shape[0], device=z.device), z.ndim | |
) | |
if add_noise: | |
noised_z = z + noise * append_dims(sigma, z.ndim).cuda() | |
noised_z = noised_z / torch.sqrt( | |
1.0 + sigmas[0] ** 2.0 | |
) # Note: hardcoded to DDPM-like scaling. need to generalize later. | |
else: | |
noised_z = z / torch.sqrt(1.0 + sigmas[0] ** 2.0) | |
def denoiser(x, sigma, c): | |
return model.denoiser(model.model, x, sigma, c) | |
load_model(model.denoiser) | |
load_model(model.model) | |
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc) | |
unload_model(model.model) | |
unload_model(model.denoiser) | |
load_model(model.first_stage_model) | |
samples_x = model.decode_first_stage(samples_z) | |
unload_model(model.first_stage_model) | |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) | |
if filter is not None: | |
samples = filter(samples) | |
grid = embed_watemark(torch.stack([samples])) | |
grid = rearrange(grid, "n b c h w -> (n h) (b w) c") | |
outputs.image(grid.cpu().numpy()) | |
if return_latents: | |
return samples, samples_z | |
return samples | |