appp
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import HubertForSequenceClassification, HubertConfig, Wav2Vec2FeatureExtractor
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
# Load model and tokenizer
|
7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
+
model_name = "model_hubert_finetuned_nopeft.pth" # Replace with your model path or Hugging Face model hub path
|
9 |
+
config = HubertConfig.from_pretrained("superb/hubert-large-superb-er")
|
10 |
+
config.id2label = {0: 'neu', 1: 'hap', 2: 'ang', 3: 'sad', 4: 'dis', 5: 'sur', 6: 'fea', 7: 'cal'}
|
11 |
+
config.label2id = {"neu": 0, "hap": 1, "ang": 2, "sad": 3, "dis": 4, "sur": 5, "fea": 6, "cal": 7}
|
12 |
+
config.num_labels = 8 # Set it to the number of classes in your SER task
|
13 |
+
|
14 |
+
# Load the pre-trained model with the modified configuration
|
15 |
+
model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-er", config=config, ignore_mismatched_sizes=True)
|
16 |
+
model.to(device)
|
17 |
+
checkpoint =torch.load(model_name, map_location = device)
|
18 |
+
model.load_state_dict(checkpoint)
|
19 |
+
|
20 |
+
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
# Load feature extractor
|
24 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
|
25 |
+
|
26 |
+
st.title("Speech Emotion Recognition Model")
|
27 |
+
|
28 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=["wav"])
|
29 |
+
|
30 |
+
if uploaded_file is not None:
|
31 |
+
# Load audio file
|
32 |
+
audio_input, sampling_rate = sf.read(uploaded_file)
|
33 |
+
|
34 |
+
# Preprocess audio input
|
35 |
+
inputs = feature_extractor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True)
|
36 |
+
inputs = {key: value.to('cuda' if torch.cuda.is_available() else 'cpu') for key, value in inputs.items()}
|
37 |
+
|
38 |
+
# Get prediction
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(**inputs)
|
41 |
+
logits = outputs.logits
|
42 |
+
probabilities = torch.softmax(logits, dim=-1)
|
43 |
+
predicted_class = torch.argmax(probabilities, dim=1).item()
|
44 |
+
|
45 |
+
# Display prediction
|
46 |
+
st.write(f"Predicted class: {config.id2label[predicted_class]}")
|
47 |
+
st.write(f"Class probabilities: {probabilities}")
|