Spaces:
Sleeping
Sleeping
Commit
·
525145c
0
Parent(s):
Duplicate from FrankZxShen/so-vits-svc-models-ba
Browse filesCo-authored-by: ZxShen <FrankZxShen@users.noreply.huggingface.co>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- G_387200.pth +3 -0
- G_584000.pth +3 -0
- README.md +14 -0
- app.py +376 -0
- cluster/__init__.py +29 -0
- cluster/kmeans.py +201 -0
- cluster/train_cluster.py +84 -0
- config.json +237 -0
- diffusion/__init__.py +0 -0
- diffusion/data_loaders.py +284 -0
- diffusion/diffusion.py +317 -0
- diffusion/diffusion_onnx.py +612 -0
- diffusion/dpm_solver_pytorch.py +1201 -0
- diffusion/how to export onnx.md +4 -0
- diffusion/infer_gt_mel.py +74 -0
- diffusion/logger/__init__.py +0 -0
- diffusion/logger/saver.py +150 -0
- diffusion/logger/utils.py +126 -0
- diffusion/onnx_export.py +226 -0
- diffusion/solver.py +195 -0
- diffusion/unit2mel.py +100 -0
- diffusion/vocoder.py +94 -0
- diffusion/wavenet.py +108 -0
- inference/__init__.py +0 -0
- inference/chunks_temp.json +1 -0
- inference/infer_tool.py +407 -0
- inference/infer_tool_grad.py +171 -0
- inference/slicer.py +142 -0
- models.py +420 -0
- modules/F0Predictor/CrepeF0Predictor.py +31 -0
- modules/F0Predictor/DioF0Predictor.py +85 -0
- modules/F0Predictor/F0Predictor.py +16 -0
- modules/F0Predictor/HarvestF0Predictor.py +81 -0
- modules/F0Predictor/PMF0Predictor.py +83 -0
- modules/F0Predictor/__init__.py +0 -0
- modules/F0Predictor/crepe.py +340 -0
- modules/__init__.py +0 -0
- modules/attentions.py +349 -0
- modules/commons.py +188 -0
- modules/enhancer.py +105 -0
- modules/losses.py +61 -0
- modules/mel_processing.py +112 -0
- modules/modules.py +342 -0
- pretrain/checkpoint_best_legacy_500.pt +3 -0
- pretrain/meta.py +31 -0
- pretrain/nsf_hifigan/NOTICE.txt +74 -0
- pretrain/nsf_hifigan/NOTICE.zh-CN.txt +72 -0
- pretrain/nsf_hifigan/config.json +38 -0
- pretrain/put_hubert_ckpt_here +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
pretrain/nsf_hifigan/model filter=lfs diff=lfs merge=lfs -text
|
G_387200.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:206f100ada9f7ade1b35e96a505130572ef16c0998697d432d78f54bcd95a029
|
3 |
+
size 629208283
|
G_584000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45c28e87e2ed299759bb3e7665b988f8bbfd2a52fa8bf1ab99202af244db45b0
|
3 |
+
size 629208283
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: So Vits Svc Models Ba
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.32.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
duplicated_from: FrankZxShen/so-vits-svc-models-ba
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import traceback
|
3 |
+
import torch
|
4 |
+
from scipy.io import wavfile
|
5 |
+
import edge_tts
|
6 |
+
import subprocess
|
7 |
+
import gradio as gr
|
8 |
+
import gradio.processing_utils as gr_pu
|
9 |
+
import io
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
+
import time
|
13 |
+
from pathlib import Path
|
14 |
+
import re
|
15 |
+
import json
|
16 |
+
import argparse
|
17 |
+
|
18 |
+
import librosa
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import numpy as np
|
21 |
+
import soundfile
|
22 |
+
|
23 |
+
from inference import infer_tool
|
24 |
+
from inference import slicer
|
25 |
+
from inference.infer_tool import Svc
|
26 |
+
|
27 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
28 |
+
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
|
29 |
+
|
30 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
31 |
+
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
32 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
33 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
34 |
+
logging.getLogger('multipart').setLevel(logging.WARNING)
|
35 |
+
|
36 |
+
model = None
|
37 |
+
spk = None
|
38 |
+
debug = False
|
39 |
+
|
40 |
+
|
41 |
+
class HParams():
|
42 |
+
def __init__(self, **kwargs):
|
43 |
+
for k, v in kwargs.items():
|
44 |
+
if type(v) == dict:
|
45 |
+
v = HParams(**v)
|
46 |
+
self[k] = v
|
47 |
+
|
48 |
+
def keys(self):
|
49 |
+
return self.__dict__.keys()
|
50 |
+
|
51 |
+
def items(self):
|
52 |
+
return self.__dict__.items()
|
53 |
+
|
54 |
+
def values(self):
|
55 |
+
return self.__dict__.values()
|
56 |
+
|
57 |
+
def __len__(self):
|
58 |
+
return len(self.__dict__)
|
59 |
+
|
60 |
+
def __getitem__(self, key):
|
61 |
+
return getattr(self, key)
|
62 |
+
|
63 |
+
def __setitem__(self, key, value):
|
64 |
+
return setattr(self, key, value)
|
65 |
+
|
66 |
+
def __contains__(self, key):
|
67 |
+
return key in self.__dict__
|
68 |
+
|
69 |
+
def __repr__(self):
|
70 |
+
return self.__dict__.__repr__()
|
71 |
+
|
72 |
+
|
73 |
+
def get_hparams_from_file(config_path):
|
74 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
75 |
+
data = f.read()
|
76 |
+
config = json.loads(data)
|
77 |
+
|
78 |
+
hparams = HParams(**config)
|
79 |
+
return hparams
|
80 |
+
|
81 |
+
|
82 |
+
def vc_fn(sid, input_audio, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold):
|
83 |
+
try:
|
84 |
+
if input_audio is None:
|
85 |
+
raise gr.Error("你需要上传音频")
|
86 |
+
if model is None:
|
87 |
+
raise gr.Error("你需要指定模型")
|
88 |
+
sampling_rate, audio = input_audio
|
89 |
+
# print(audio.shape,sampling_rate)
|
90 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
91 |
+
if len(audio.shape) > 1:
|
92 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
93 |
+
temp_path = "temp.wav"
|
94 |
+
soundfile.write(temp_path, audio, sampling_rate, format="wav")
|
95 |
+
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,
|
96 |
+
pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold)
|
97 |
+
model.clear_empty()
|
98 |
+
os.remove(temp_path)
|
99 |
+
# 构建保存文件的路径,并保存到results文件夹内
|
100 |
+
try:
|
101 |
+
timestamp = str(int(time.time()))
|
102 |
+
filename = sid + "_" + timestamp + ".wav"
|
103 |
+
# output_file = os.path.join("./results", filename)
|
104 |
+
# soundfile.write(output_file, _audio, model.target_sample, format="wav")
|
105 |
+
soundfile.write('/tmp/'+filename, _audio,
|
106 |
+
model.target_sample, format="wav")
|
107 |
+
# return f"推理成功,音频文件保存为results/{filename}", (model.target_sample, _audio)
|
108 |
+
return f"推理成功,音频文件保存为{filename}", (model.target_sample, _audio)
|
109 |
+
except Exception as e:
|
110 |
+
if debug:
|
111 |
+
traceback.print_exc()
|
112 |
+
return f"文件保存失败,请手动保存", (model.target_sample, _audio)
|
113 |
+
except Exception as e:
|
114 |
+
if debug:
|
115 |
+
traceback.print_exc()
|
116 |
+
raise gr.Error(e)
|
117 |
+
|
118 |
+
|
119 |
+
def tts_func(_text, _rate, _voice):
|
120 |
+
# 使用edge-tts把文字转成音频
|
121 |
+
# voice = "zh-CN-XiaoyiNeural"#女性,较高音
|
122 |
+
# voice = "zh-CN-YunxiNeural"#男性
|
123 |
+
voice = "zh-CN-YunxiNeural" # 男性
|
124 |
+
if (_voice == "女"):
|
125 |
+
voice = "zh-CN-XiaoyiNeural"
|
126 |
+
output_file = "/tmp/"+_text[0:10]+".wav"
|
127 |
+
# communicate = edge_tts.Communicate(_text, voice)
|
128 |
+
# await communicate.save(output_file)
|
129 |
+
if _rate >= 0:
|
130 |
+
ratestr = "+{:.0%}".format(_rate)
|
131 |
+
elif _rate < 0:
|
132 |
+
ratestr = "{:.0%}".format(_rate) # 减号自带
|
133 |
+
|
134 |
+
p = subprocess.Popen("edge-tts " +
|
135 |
+
" --text "+_text +
|
136 |
+
" --write-media "+output_file +
|
137 |
+
" --voice "+voice +
|
138 |
+
" --rate="+ratestr, shell=True,
|
139 |
+
stdout=subprocess.PIPE,
|
140 |
+
stdin=subprocess.PIPE)
|
141 |
+
p.wait()
|
142 |
+
return output_file
|
143 |
+
|
144 |
+
|
145 |
+
def text_clear(text):
|
146 |
+
return re.sub(r"[\n\,\(\) ]", "", text)
|
147 |
+
|
148 |
+
|
149 |
+
def vc_fn2(sid, input_audio, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, text2tts, tts_rate, tts_voice, f0_predictor, enhancer_adaptive_key, cr_threshold):
|
150 |
+
# 使用edge-tts把文字转成音频
|
151 |
+
text2tts = text_clear(text2tts)
|
152 |
+
output_file = tts_func(text2tts, tts_rate, tts_voice)
|
153 |
+
|
154 |
+
# 调整采样率
|
155 |
+
sr2 = 44100
|
156 |
+
wav, sr = librosa.load(output_file)
|
157 |
+
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2)
|
158 |
+
save_path2 = text2tts[0:10]+"_44k"+".wav"
|
159 |
+
wavfile.write(save_path2, sr2,
|
160 |
+
(wav2 * np.iinfo(np.int16).max).astype(np.int16)
|
161 |
+
)
|
162 |
+
|
163 |
+
# 读取音频
|
164 |
+
sample_rate, data = gr_pu.audio_from_file(save_path2)
|
165 |
+
vc_input = (sample_rate, data)
|
166 |
+
|
167 |
+
a, b = vc_fn(sid, vc_input, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale,
|
168 |
+
pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold)
|
169 |
+
os.remove(output_file)
|
170 |
+
os.remove(save_path2)
|
171 |
+
return a, b
|
172 |
+
|
173 |
+
|
174 |
+
models_info = [
|
175 |
+
{
|
176 |
+
"description": """
|
177 |
+
这个模型包含碧蓝档案的141名角色。\n\n
|
178 |
+
Space采用CPU推理,速度极慢,建议下载模型本地GPU推理。\n\n
|
179 |
+
""",
|
180 |
+
"model_path": "./G_387200.pth",
|
181 |
+
"config_path": "./config.json",
|
182 |
+
}
|
183 |
+
]
|
184 |
+
|
185 |
+
model_inferall = []
|
186 |
+
if __name__ == "__main__":
|
187 |
+
parser = argparse.ArgumentParser()
|
188 |
+
parser.add_argument("--share", action="store_true",
|
189 |
+
default=False, help="share gradio app")
|
190 |
+
# 一定要设置的部分
|
191 |
+
parser.add_argument('-cl', '--clip', type=float,
|
192 |
+
default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
|
193 |
+
parser.add_argument('-n', '--clean_names', type=str, nargs='+',
|
194 |
+
default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
|
195 |
+
parser.add_argument('-t', '--trans', type=int, nargs='+',
|
196 |
+
default=[0], help='音高调整,支持正负(半音)')
|
197 |
+
parser.add_argument('-s', '--spk_list', type=str,
|
198 |
+
nargs='+', default=['nen'], help='合成目标说话人名称')
|
199 |
+
|
200 |
+
# 可选项部分
|
201 |
+
parser.add_argument('-a', '--auto_predict_f0', action='store_true',
|
202 |
+
default=False, help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
|
203 |
+
parser.add_argument('-cm', '--cluster_model_path', type=str,
|
204 |
+
default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
|
205 |
+
parser.add_argument('-cr', '--cluster_infer_ratio', type=float,
|
206 |
+
default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可')
|
207 |
+
parser.add_argument('-lg', '--linear_gradient', type=float, default=0,
|
208 |
+
help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
|
209 |
+
parser.add_argument('-f0p', '--f0_predictor', type=str, default="pm",
|
210 |
+
help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)')
|
211 |
+
parser.add_argument('-eh', '--enhance', action='store_true', default=False,
|
212 |
+
help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
|
213 |
+
parser.add_argument('-shd', '--shallow_diffusion', action='store_true',
|
214 |
+
default=False, help='是否使用浅层扩散,使用后可解决一部分电音问题,默认关闭,该选项打开时,NSF_HIFIGAN增强器将会被禁止')
|
215 |
+
|
216 |
+
# 浅扩散设置
|
217 |
+
parser.add_argument('-dm', '--diffusion_model_path', type=str,
|
218 |
+
default="logs/44k/diffusion/model_0.pt", help='扩散模型路径')
|
219 |
+
parser.add_argument('-dc', '--diffusion_config_path', type=str,
|
220 |
+
default="logs/44k/diffusion/config.yaml", help='扩散模型配置文件路径')
|
221 |
+
parser.add_argument('-ks', '--k_step', type=int,
|
222 |
+
default=100, help='扩散步数,越大越接近扩散模型的结果,默认100')
|
223 |
+
parser.add_argument('-od', '--only_diffusion', action='store_true',
|
224 |
+
default=False, help='纯扩散模式,该模式不会加载sovits模型,以扩散模型推理')
|
225 |
+
|
226 |
+
# 不用动的部分
|
227 |
+
parser.add_argument('-sd', '--slice_db', type=int,
|
228 |
+
default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
229 |
+
parser.add_argument('-d', '--device', type=str,
|
230 |
+
default=None, help='推理设备,None则为自动选择cpu和gpu')
|
231 |
+
parser.add_argument('-ns', '--noice_scale', type=float,
|
232 |
+
default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
|
233 |
+
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5,
|
234 |
+
help='推理音频pad秒数,由于未知���因开头结尾会有异响,pad一小段静音段后就不会出现')
|
235 |
+
parser.add_argument('-wf', '--wav_format', type=str,
|
236 |
+
default='flac', help='音频输出格式')
|
237 |
+
parser.add_argument('-lgr', '--linear_gradient_retain', type=float,
|
238 |
+
default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
|
239 |
+
parser.add_argument('-eak', '--enhancer_adaptive_key',
|
240 |
+
type=int, default=0, help='使增强器适应更高的音域(单位为半音数)|默认为0')
|
241 |
+
parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,
|
242 |
+
help='F0过滤阈值,只有使用crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音')
|
243 |
+
args = parser.parse_args()
|
244 |
+
categories = ["Blue Archive"]
|
245 |
+
others = {
|
246 |
+
"PCR vits-fast-fineturning": "https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-pcr",
|
247 |
+
"Blue Archive vits-fast-fineturning": "https://huggingface.co/spaces/FrankZxShen/vits-fast-fineturning-models-ba",
|
248 |
+
}
|
249 |
+
for info in models_info:
|
250 |
+
config_path = info['config_path']
|
251 |
+
model_path = info['model_path']
|
252 |
+
description = info['description']
|
253 |
+
clean_names = args.clean_names
|
254 |
+
trans = args.trans
|
255 |
+
spk_list = list(get_hparams_from_file(config_path).spk.keys())
|
256 |
+
slice_db = args.slice_db
|
257 |
+
wav_format = args.wav_format
|
258 |
+
auto_predict_f0 = args.auto_predict_f0
|
259 |
+
cluster_infer_ratio = args.cluster_infer_ratio
|
260 |
+
noice_scale = args.noice_scale
|
261 |
+
pad_seconds = args.pad_seconds
|
262 |
+
clip = args.clip
|
263 |
+
lg = args.linear_gradient
|
264 |
+
lgr = args.linear_gradient_retain
|
265 |
+
f0p = args.f0_predictor
|
266 |
+
enhance = args.enhance
|
267 |
+
enhancer_adaptive_key = args.enhancer_adaptive_key
|
268 |
+
cr_threshold = args.f0_filter_threshold
|
269 |
+
diffusion_model_path = args.diffusion_model_path
|
270 |
+
diffusion_config_path = args.diffusion_config_path
|
271 |
+
k_step = args.k_step
|
272 |
+
only_diffusion = args.only_diffusion
|
273 |
+
shallow_diffusion = args.shallow_diffusion
|
274 |
+
|
275 |
+
model = Svc(model_path, config_path, args.device, args.cluster_model_path, enhance,
|
276 |
+
diffusion_model_path, diffusion_config_path, shallow_diffusion, only_diffusion)
|
277 |
+
|
278 |
+
model_inferall.append((description, spk_list, model))
|
279 |
+
|
280 |
+
app = gr.Blocks()
|
281 |
+
with app:
|
282 |
+
gr.Markdown(
|
283 |
+
"# <center> so-vits-svc-models-ba\n"
|
284 |
+
"# <center> Pay attention!!! Space uses CPU inferencing, which is extremely slow. It is recommended to download models.\n"
|
285 |
+
"# <center> 注意!!!Space采用CPU推理,速度极慢,建议下载模型使用本地GPU推理。\n"
|
286 |
+
"## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
|
287 |
+
"## <center> 请不要生成会对个人以及组织造成侵害的内容\n\n"
|
288 |
+
)
|
289 |
+
gr.Markdown("# Blue Archive\n\n"
|
290 |
+
)
|
291 |
+
with gr.Tabs():
|
292 |
+
for category in categories:
|
293 |
+
with gr.TabItem(category):
|
294 |
+
for i, (description, speakers, model) in enumerate(
|
295 |
+
model_inferall):
|
296 |
+
gr.Markdown(description)
|
297 |
+
with gr.Row():
|
298 |
+
with gr.Column():
|
299 |
+
# textbox = gr.TextArea(label="Text",
|
300 |
+
# placeholder="Type your sentence here ",
|
301 |
+
# value="新たなキャラを解放できるようになったようですね。", elem_id=f"tts-input")
|
302 |
+
|
303 |
+
gr.Markdown(value="""
|
304 |
+
<font size=2> 推理设置</font>
|
305 |
+
""")
|
306 |
+
sid = gr.Dropdown(
|
307 |
+
choices=speakers, value=speakers[0], label='角色选择')
|
308 |
+
auto_f0 = gr.Checkbox(
|
309 |
+
label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False)
|
310 |
+
f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=[
|
311 |
+
"pm", "dio", "harvest", "crepe"], value="pm")
|
312 |
+
vc_transform = gr.Number(
|
313 |
+
label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
314 |
+
cluster_ratio = gr.Number(
|
315 |
+
label="聚类模型混合比例,0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
316 |
+
slice_db = gr.Number(label="切片阈值", value=-40)
|
317 |
+
noise_scale = gr.Number(
|
318 |
+
label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
319 |
+
with gr.Column():
|
320 |
+
pad_seconds = gr.Number(
|
321 |
+
label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
322 |
+
cl_num = gr.Number(
|
323 |
+
label="音频自动切片,0为不切片,单位为秒(s)", value=0)
|
324 |
+
lg_num = gr.Number(
|
325 |
+
label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
326 |
+
lgr_num = gr.Number(
|
327 |
+
label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75)
|
328 |
+
enhancer_adaptive_key = gr.Number(
|
329 |
+
label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0)
|
330 |
+
cr_threshold = gr.Number(
|
331 |
+
label="F0过滤阈值,只有启动crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音", value=0.05)
|
332 |
+
with gr.Tabs():
|
333 |
+
with gr.TabItem("音频转音频"):
|
334 |
+
vc_input3 = gr.Audio(label="选择音频")
|
335 |
+
vc_submit = gr.Button(
|
336 |
+
"音频转换", variant="primary")
|
337 |
+
with gr.TabItem("文字转音频"):
|
338 |
+
text2tts = gr.Textbox(
|
339 |
+
label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪")
|
340 |
+
tts_rate = gr.Number(label="tts语速", value=0)
|
341 |
+
tts_voice = gr.Radio(label="性别", choices=[
|
342 |
+
"男", "女"], value="男")
|
343 |
+
vc_submit2 = gr.Button(
|
344 |
+
"文字转换", variant="primary")
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column():
|
347 |
+
vc_output1 = gr.Textbox(label="Output Message")
|
348 |
+
with gr.Column():
|
349 |
+
vc_output2 = gr.Audio(
|
350 |
+
label="Output Audio", interactive=False)
|
351 |
+
|
352 |
+
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds,
|
353 |
+
cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold], [vc_output1, vc_output2])
|
354 |
+
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num,
|
355 |
+
lg_num, lgr_num, text2tts, tts_rate, tts_voice, f0_predictor, enhancer_adaptive_key, cr_threshold], [vc_output1, vc_output2])
|
356 |
+
# gr.Examples(
|
357 |
+
# examples=example,
|
358 |
+
# inputs=[textbox, char_dropdown, language_dropdown,
|
359 |
+
# duration_slider, symbol_input],
|
360 |
+
# outputs=[text_output, audio_output],
|
361 |
+
# fn=tts_fn
|
362 |
+
# )
|
363 |
+
for category, link in others.items():
|
364 |
+
with gr.TabItem(category):
|
365 |
+
gr.Markdown(
|
366 |
+
f'''
|
367 |
+
<center>
|
368 |
+
<h2>Click to Go</h2>
|
369 |
+
<a href="{link}">
|
370 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg"
|
371 |
+
</a>
|
372 |
+
</center>
|
373 |
+
'''
|
374 |
+
)
|
375 |
+
|
376 |
+
app.queue(concurrency_count=3).launch(show_api=False, share=args.share)
|
cluster/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from sklearn.cluster import KMeans
|
4 |
+
|
5 |
+
def get_cluster_model(ckpt_path):
|
6 |
+
checkpoint = torch.load(ckpt_path)
|
7 |
+
kmeans_dict = {}
|
8 |
+
for spk, ckpt in checkpoint.items():
|
9 |
+
km = KMeans(ckpt["n_features_in_"])
|
10 |
+
km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
|
11 |
+
km.__dict__["_n_threads"] = ckpt["_n_threads"]
|
12 |
+
km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
|
13 |
+
kmeans_dict[spk] = km
|
14 |
+
return kmeans_dict
|
15 |
+
|
16 |
+
def get_cluster_result(model, x, speaker):
|
17 |
+
"""
|
18 |
+
x: np.array [t, 256]
|
19 |
+
return cluster class result
|
20 |
+
"""
|
21 |
+
return model[speaker].predict(x)
|
22 |
+
|
23 |
+
def get_cluster_center_result(model, x,speaker):
|
24 |
+
"""x: np.array [t, 256]"""
|
25 |
+
predict = model[speaker].predict(x)
|
26 |
+
return model[speaker].cluster_centers_[predict]
|
27 |
+
|
28 |
+
def get_center(model, x,speaker):
|
29 |
+
return model[speaker].cluster_centers_[x]
|
cluster/kmeans.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math,pdb
|
2 |
+
import torch,pynvml
|
3 |
+
from torch.nn.functional import normalize
|
4 |
+
from time import time
|
5 |
+
import numpy as np
|
6 |
+
# device=torch.device("cuda:0")
|
7 |
+
def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
|
8 |
+
""" Picks k points in the data based on the kmeans++ method.
|
9 |
+
|
10 |
+
Parameters
|
11 |
+
----------
|
12 |
+
data : torch.Tensor
|
13 |
+
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
|
14 |
+
data, rank 2 multidimensional data, in which case one
|
15 |
+
row is one observation.
|
16 |
+
k : int
|
17 |
+
Number of samples to generate.
|
18 |
+
sample_size : int
|
19 |
+
sample data to avoid memory overflow during calculation
|
20 |
+
|
21 |
+
Returns
|
22 |
+
-------
|
23 |
+
init : ndarray
|
24 |
+
A 'k' by 'N' containing the initial centroids.
|
25 |
+
|
26 |
+
References
|
27 |
+
----------
|
28 |
+
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
|
29 |
+
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
|
30 |
+
on Discrete Algorithms, 2007.
|
31 |
+
.. [2] scipy/cluster/vq.py: _kpp
|
32 |
+
"""
|
33 |
+
batch_size=data.shape[0]
|
34 |
+
if batch_size>sample_size:
|
35 |
+
data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
|
36 |
+
dims = data.shape[1] if len(data.shape) > 1 else 1
|
37 |
+
init = torch.zeros((k, dims)).to(data.device)
|
38 |
+
r = torch.distributions.uniform.Uniform(0, 1)
|
39 |
+
for i in range(k):
|
40 |
+
if i == 0:
|
41 |
+
init[i, :] = data[torch.randint(data.shape[0], [1])]
|
42 |
+
else:
|
43 |
+
D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
|
44 |
+
probs = D2 / torch.sum(D2)
|
45 |
+
cumprobs = torch.cumsum(probs, dim=0)
|
46 |
+
init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
|
47 |
+
return init
|
48 |
+
class KMeansGPU:
|
49 |
+
'''
|
50 |
+
Kmeans clustering algorithm implemented with PyTorch
|
51 |
+
|
52 |
+
Parameters:
|
53 |
+
n_clusters: int,
|
54 |
+
Number of clusters
|
55 |
+
|
56 |
+
max_iter: int, default: 100
|
57 |
+
Maximum number of iterations
|
58 |
+
|
59 |
+
tol: float, default: 0.0001
|
60 |
+
Tolerance
|
61 |
+
|
62 |
+
verbose: int, default: 0
|
63 |
+
Verbosity
|
64 |
+
|
65 |
+
mode: {'euclidean', 'cosine'}, default: 'euclidean'
|
66 |
+
Type of distance measure
|
67 |
+
|
68 |
+
init_method: {'random', 'point', '++'}
|
69 |
+
Type of initialization
|
70 |
+
|
71 |
+
minibatch: {None, int}, default: None
|
72 |
+
Batch size of MinibatchKmeans algorithm
|
73 |
+
if None perform full KMeans algorithm
|
74 |
+
|
75 |
+
Attributes:
|
76 |
+
centroids: torch.Tensor, shape: [n_clusters, n_features]
|
77 |
+
cluster centroids
|
78 |
+
'''
|
79 |
+
def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
|
80 |
+
self.n_clusters = n_clusters
|
81 |
+
self.max_iter = max_iter
|
82 |
+
self.tol = tol
|
83 |
+
self.verbose = verbose
|
84 |
+
self.mode = mode
|
85 |
+
self.device=device
|
86 |
+
pynvml.nvmlInit()
|
87 |
+
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
|
88 |
+
info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
|
89 |
+
self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
|
90 |
+
print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def cos_sim(a, b):
|
94 |
+
"""
|
95 |
+
Compute cosine similarity of 2 sets of vectors
|
96 |
+
|
97 |
+
Parameters:
|
98 |
+
a: torch.Tensor, shape: [m, n_features]
|
99 |
+
|
100 |
+
b: torch.Tensor, shape: [n, n_features]
|
101 |
+
"""
|
102 |
+
return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
def euc_sim(a, b):
|
106 |
+
"""
|
107 |
+
Compute euclidean similarity of 2 sets of vectors
|
108 |
+
Parameters:
|
109 |
+
a: torch.Tensor, shape: [m, n_features]
|
110 |
+
b: torch.Tensor, shape: [n, n_features]
|
111 |
+
"""
|
112 |
+
return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
|
113 |
+
|
114 |
+
def max_sim(self, a, b):
|
115 |
+
"""
|
116 |
+
Compute maximum similarity (or minimum distance) of each vector
|
117 |
+
in a with all of the vectors in b
|
118 |
+
Parameters:
|
119 |
+
a: torch.Tensor, shape: [m, n_features]
|
120 |
+
b: torch.Tensor, shape: [n, n_features]
|
121 |
+
"""
|
122 |
+
if self.mode == 'cosine':
|
123 |
+
sim_func = self.cos_sim
|
124 |
+
elif self.mode == 'euclidean':
|
125 |
+
sim_func = self.euc_sim
|
126 |
+
sim = sim_func(a, b)
|
127 |
+
max_sim_v, max_sim_i = sim.max(dim=-1)
|
128 |
+
return max_sim_v, max_sim_i
|
129 |
+
|
130 |
+
def fit_predict(self, X):
|
131 |
+
"""
|
132 |
+
Combination of fit() and predict() methods.
|
133 |
+
This is faster than calling fit() and predict() seperately.
|
134 |
+
Parameters:
|
135 |
+
X: torch.Tensor, shape: [n_samples, n_features]
|
136 |
+
centroids: {torch.Tensor, None}, default: None
|
137 |
+
if given, centroids will be initialized with given tensor
|
138 |
+
if None, centroids will be randomly chosen from X
|
139 |
+
Return:
|
140 |
+
labels: torch.Tensor, shape: [n_samples]
|
141 |
+
|
142 |
+
mini_=33kk/k*remain
|
143 |
+
mini=min(mini_,fea_shape)
|
144 |
+
offset=log2(k/1000)*1.5
|
145 |
+
kpp_all=min(mini_*10/offset,fea_shape)
|
146 |
+
kpp_sample=min(mini_/12/offset,fea_shape)
|
147 |
+
"""
|
148 |
+
assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
|
149 |
+
assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
|
150 |
+
assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
|
151 |
+
# print("verbose:%s"%self.verbose)
|
152 |
+
|
153 |
+
offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
|
154 |
+
with torch.no_grad():
|
155 |
+
batch_size= X.shape[0]
|
156 |
+
# print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
|
157 |
+
start_time = time()
|
158 |
+
if (self.minibatch*10//offset< batch_size):
|
159 |
+
x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
|
160 |
+
else:
|
161 |
+
x = X.to(self.device)
|
162 |
+
# print(x.device)
|
163 |
+
self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
|
164 |
+
del x
|
165 |
+
torch.cuda.empty_cache()
|
166 |
+
# self.centroids = self.centroids.to(self.device)
|
167 |
+
num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
|
168 |
+
closest = None#[3098036]#int64
|
169 |
+
if(self.minibatch>=batch_size//2 and self.minibatch<batch_size):
|
170 |
+
X = X[torch.randint(0, batch_size,[self.minibatch])].to(self.device)
|
171 |
+
elif(self.minibatch>=batch_size):
|
172 |
+
X=X.to(self.device)
|
173 |
+
for i in range(self.max_iter):
|
174 |
+
iter_time = time()
|
175 |
+
if self.minibatch<batch_size//2:#可用minibatch数太小,每次都得从内存倒腾到显存
|
176 |
+
x = X[torch.randint(0, batch_size, [self.minibatch])].to(self.device)
|
177 |
+
else:#否则直接全部缓存
|
178 |
+
x = X
|
179 |
+
|
180 |
+
closest = self.max_sim(a=x, b=self.centroids)[1].to(torch.int16)#[3098036]#int64#0~999
|
181 |
+
matched_clusters, counts = closest.unique(return_counts=True)#int64#1k
|
182 |
+
expanded_closest = closest[None].expand(self.n_clusters, -1)#[1000, 3098036]#int16#0~999
|
183 |
+
mask = (expanded_closest==torch.arange(self.n_clusters, device=self.device)[:, None]).to(X.dtype)#==后者是int64*1000
|
184 |
+
c_grad = mask @ x / mask.sum(-1)[..., :, None]
|
185 |
+
c_grad[c_grad!=c_grad] = 0 # remove NaNs
|
186 |
+
error = (c_grad - self.centroids).pow(2).sum()
|
187 |
+
if self.minibatch is not None:
|
188 |
+
lr = 1/num_points_in_clusters[:,None] * 0.9 + 0.1
|
189 |
+
else:
|
190 |
+
lr = 1
|
191 |
+
matched_clusters=matched_clusters.long()
|
192 |
+
num_points_in_clusters[matched_clusters] += counts#IndexError: tensors used as indices must be long, byte or bool tensors
|
193 |
+
self.centroids = self.centroids * (1-lr) + c_grad * lr
|
194 |
+
if self.verbose >= 2:
|
195 |
+
print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
|
196 |
+
if error <= self.tol:
|
197 |
+
break
|
198 |
+
|
199 |
+
if self.verbose >= 1:
|
200 |
+
print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
|
201 |
+
return closest
|
cluster/train_cluster.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time,pdb
|
2 |
+
import tqdm
|
3 |
+
from time import time as ttime
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import logging
|
7 |
+
import argparse
|
8 |
+
from kmeans import KMeansGPU
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.cluster import KMeans,MiniBatchKMeans
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
from time import time as ttime
|
16 |
+
import pynvml,torch
|
17 |
+
|
18 |
+
def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False,use_gpu=False):#gpu_minibatch真拉,虽然库支持但是也不考虑
|
19 |
+
logger.info(f"Loading features from {in_dir}")
|
20 |
+
features = []
|
21 |
+
nums = 0
|
22 |
+
for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
|
23 |
+
# for name in os.listdir(in_dir):
|
24 |
+
# path="%s/%s"%(in_dir,name)
|
25 |
+
features.append(torch.load(path,map_location="cpu").squeeze(0).numpy().T)
|
26 |
+
# print(features[-1].shape)
|
27 |
+
features = np.concatenate(features, axis=0)
|
28 |
+
print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
|
29 |
+
features = features.astype(np.float32)
|
30 |
+
logger.info(f"Clustering features of shape: {features.shape}")
|
31 |
+
t = time.time()
|
32 |
+
if(use_gpu==False):
|
33 |
+
if use_minibatch:
|
34 |
+
kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
|
35 |
+
else:
|
36 |
+
kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
|
37 |
+
else:
|
38 |
+
kmeans = KMeansGPU(n_clusters=n_clusters, mode='euclidean', verbose=2 if verbose else 0,max_iter=500,tol=1e-2)#
|
39 |
+
features=torch.from_numpy(features)#.to(device)
|
40 |
+
labels = kmeans.fit_predict(features)#
|
41 |
+
|
42 |
+
print(time.time()-t, "s")
|
43 |
+
|
44 |
+
x = {
|
45 |
+
"n_features_in_": kmeans.n_features_in_ if use_gpu==False else features.shape[1],
|
46 |
+
"_n_threads": kmeans._n_threads if use_gpu==False else 4,
|
47 |
+
"cluster_centers_": kmeans.cluster_centers_ if use_gpu==False else kmeans.centroids.cpu().numpy(),
|
48 |
+
}
|
49 |
+
print("end")
|
50 |
+
|
51 |
+
return x
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
parser = argparse.ArgumentParser()
|
55 |
+
parser.add_argument('--dataset', type=Path, default="./dataset/44k",
|
56 |
+
help='path of training data directory')
|
57 |
+
parser.add_argument('--output', type=Path, default="logs/44k",
|
58 |
+
help='path of model output directory')
|
59 |
+
parser.add_argument('--gpu',action='store_true', default=False ,
|
60 |
+
help='to use GPU')
|
61 |
+
|
62 |
+
|
63 |
+
args = parser.parse_args()
|
64 |
+
|
65 |
+
checkpoint_dir = args.output
|
66 |
+
dataset = args.dataset
|
67 |
+
use_gpu = args.gpu
|
68 |
+
n_clusters = 10000
|
69 |
+
|
70 |
+
ckpt = {}
|
71 |
+
for spk in os.listdir(dataset):
|
72 |
+
if os.path.isdir(dataset/spk):
|
73 |
+
print(f"train kmeans for {spk}...")
|
74 |
+
in_dir = dataset/spk
|
75 |
+
x = train_cluster(in_dir, n_clusters,use_minibatch=False,verbose=False,use_gpu=use_gpu)
|
76 |
+
ckpt[spk] = x
|
77 |
+
|
78 |
+
checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
|
79 |
+
checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
|
80 |
+
torch.save(
|
81 |
+
ckpt,
|
82 |
+
checkpoint_path,
|
83 |
+
)
|
84 |
+
|
config.json
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 800,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 10240,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"use_sr": true,
|
22 |
+
"max_speclen": 512,
|
23 |
+
"port": "8001",
|
24 |
+
"keep_ckpts": 3,
|
25 |
+
"all_in_mem": false
|
26 |
+
},
|
27 |
+
"data": {
|
28 |
+
"training_files": "filelists/train.txt",
|
29 |
+
"validation_files": "filelists/val.txt",
|
30 |
+
"max_wav_value": 32768.0,
|
31 |
+
"sampling_rate": 44100,
|
32 |
+
"filter_length": 2048,
|
33 |
+
"hop_length": 512,
|
34 |
+
"win_length": 2048,
|
35 |
+
"n_mel_channels": 80,
|
36 |
+
"mel_fmin": 0.0,
|
37 |
+
"mel_fmax": 22050
|
38 |
+
},
|
39 |
+
"model": {
|
40 |
+
"inter_channels": 192,
|
41 |
+
"hidden_channels": 192,
|
42 |
+
"filter_channels": 768,
|
43 |
+
"n_heads": 2,
|
44 |
+
"n_layers": 6,
|
45 |
+
"kernel_size": 3,
|
46 |
+
"p_dropout": 0.1,
|
47 |
+
"resblock": "1",
|
48 |
+
"resblock_kernel_sizes": [
|
49 |
+
3,
|
50 |
+
7,
|
51 |
+
11
|
52 |
+
],
|
53 |
+
"resblock_dilation_sizes": [
|
54 |
+
[
|
55 |
+
1,
|
56 |
+
3,
|
57 |
+
5
|
58 |
+
],
|
59 |
+
[
|
60 |
+
1,
|
61 |
+
3,
|
62 |
+
5
|
63 |
+
],
|
64 |
+
[
|
65 |
+
1,
|
66 |
+
3,
|
67 |
+
5
|
68 |
+
]
|
69 |
+
],
|
70 |
+
"upsample_rates": [
|
71 |
+
8,
|
72 |
+
8,
|
73 |
+
2,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
+
"upsample_initial_channel": 512,
|
78 |
+
"upsample_kernel_sizes": [
|
79 |
+
16,
|
80 |
+
16,
|
81 |
+
4,
|
82 |
+
4,
|
83 |
+
4
|
84 |
+
],
|
85 |
+
"n_layers_q": 3,
|
86 |
+
"use_spectral_norm": false,
|
87 |
+
"gin_channels": 768,
|
88 |
+
"ssl_dim": 768,
|
89 |
+
"n_speakers": 142,
|
90 |
+
"speech_encoder": "vec768l12",
|
91 |
+
"speaker_embedding": false
|
92 |
+
},
|
93 |
+
"spk": {
|
94 |
+
"\u679c\u7a57": 0,
|
95 |
+
"\u82b9\u5a1c\uff08\u5723\u8bde\uff09": 1,
|
96 |
+
"\u7460\u7f8e": 2,
|
97 |
+
"\u9065\u9999": 3,
|
98 |
+
"\u771f\u767d\uff08\u6cf3\u88c5\uff09": 4,
|
99 |
+
"\u4e9a\u5b50": 5,
|
100 |
+
"\u963f\u9732\uff08\u6b63\u6708\uff09": 6,
|
101 |
+
"\u6893": 7,
|
102 |
+
"\u660e\u91cc": 8,
|
103 |
+
"\u5343\u5bfb": 9,
|
104 |
+
"\u6fd1\u540d": 10,
|
105 |
+
"\u6731\u97f3": 11,
|
106 |
+
"\u82b1\u51db": 12,
|
107 |
+
"\u840c\u7ed8": 13,
|
108 |
+
"\u82b1\u51db\uff08\u5154\u5973\u90ce\uff09": 14,
|
109 |
+
"\u5207\u91cc\u8bfa\uff08\u6e29\u6cc9\uff09": 15,
|
110 |
+
"\u83eb": 16,
|
111 |
+
"\u4e09\u68ee": 17,
|
112 |
+
"\u5c0f\u6625": 18,
|
113 |
+
"\u739b\u4e3d": 19,
|
114 |
+
"\u7766\u6708\uff08\u6b63\u6708\uff09": 20,
|
115 |
+
"\u6b4c\u539f": 21,
|
116 |
+
"\u963f\u9732": 22,
|
117 |
+
"\u77ac\uff08\u5e7c\u5973\uff09": 23,
|
118 |
+
"\u4f0a\u5415\u6ce2": 24,
|
119 |
+
"\u7766\u6708": 25,
|
120 |
+
"\u91ce\u5bab\uff08\u6cf3\u88c5\uff09": 26,
|
121 |
+
"\u9759\u5b50\uff08\u6cf3\u88c5\uff09": 27,
|
122 |
+
"\u4f73\u4ee3\u5b50": 28,
|
123 |
+
"\u73b2\u7eb1": 29,
|
124 |
+
"\u7f8e\u6e38": 30,
|
125 |
+
"\u7231\u4e3d\u4e1d\uff08\u5973\u4ec6\uff09": 31,
|
126 |
+
"\u9759\u5b50": 32,
|
127 |
+
"\u54b2": 33,
|
128 |
+
"\u6cc9": 34,
|
129 |
+
"\u7eff": 35,
|
130 |
+
"\u83b2\u89c1\uff08\u4f53\u64cd\u670d\uff09": 36,
|
131 |
+
"\u5207\u91cc\u8bfa": 37,
|
132 |
+
"\u6708\u548f": 38,
|
133 |
+
"\u767d\u5b50": 39,
|
134 |
+
"\u4e9a\u6d25\u5b50": 40,
|
135 |
+
"\u548c\u7eb1": 41,
|
136 |
+
"\u5357": 42,
|
137 |
+
"\u94c3\u7f8e": 43,
|
138 |
+
"\u4f18\u9999\uff08\u4f53\u64cd\u670d\uff09": 44,
|
139 |
+
"\u661f\u91ce": 45,
|
140 |
+
"\u590f": 46,
|
141 |
+
"\u6731\u97f3\uff08\u5154\u5973\u90ce\uff09": 47,
|
142 |
+
"\u767d\u5b50\uff08\u9a91\u884c\uff09": 48,
|
143 |
+
"\u82e5\u85fb\uff08\u6cf3\u88c5\uff09": 49,
|
144 |
+
"\u65e5\u5948": 50,
|
145 |
+
"\u739b\u4e3d\u5a1c": 51,
|
146 |
+
"\u9e64\u57ce": 52,
|
147 |
+
"\u67da\u5b50\uff08\u5973\u4ec6\uff09": 53,
|
148 |
+
"\u6843\u4e95": 54,
|
149 |
+
"\u548c\u9999\uff08\u6e29\u6cc9\uff09": 55,
|
150 |
+
"\u6e1a": 56,
|
151 |
+
"\u5343\u590f": 57,
|
152 |
+
"\u660e\u65e5\u5948": 58,
|
153 |
+
"\u4f0a\u7ec7": 59,
|
154 |
+
"\u65f6\u96e8": 60,
|
155 |
+
"\u67ab": 61,
|
156 |
+
"\u6b4c\u539f\uff08\u5e94\u63f4\u56e2\uff09": 62,
|
157 |
+
"\u82b9\u5a1c": 63,
|
158 |
+
"\u672a\u82b1": 64,
|
159 |
+
"\u6df3\u5b50\uff08\u6b63\u6708\uff09": 65,
|
160 |
+
"\u5eb7\u5a1c": 66,
|
161 |
+
"\u5439\u96ea": 67,
|
162 |
+
"\u65e5\u548c": 68,
|
163 |
+
"\u82b1\u5b50": 69,
|
164 |
+
"\u521d\u97f3\u672a\u6765\uff08\u8054\u52a8\uff09": 70,
|
165 |
+
"\u65e5\u5bcc\u7f8e\uff08\u6cf3\u88c5\uff09": 71,
|
166 |
+
"\u5343\u590f\uff08\u6e29\u6cc9\uff09": 72,
|
167 |
+
"\u7eb1\u7eeb": 73,
|
168 |
+
"\u7eeb\u97f3": 74,
|
169 |
+
"\u4f73\u4ee3\u5b50\uff08\u6b63\u6708\uff09": 75,
|
170 |
+
"\u67da\u5b50": 76,
|
171 |
+
"\u82b9\u9999\uff08\u6b63\u6708\uff09": 77,
|
172 |
+
"\u82e5\u85fb": 78,
|
173 |
+
"\u7eeb\u97f3\uff08\u6cf3\u88c5\uff09": 79,
|
174 |
+
"\u7f8e\u7962": 80,
|
175 |
+
"\u77ac": 81,
|
176 |
+
"\u5fc3\u5948": 82,
|
177 |
+
"\u5c3c\u7984\uff08\u5154\u5973\u90ce\uff09": 83,
|
178 |
+
"\u8bfa\u4e9a": 84,
|
179 |
+
"\u5c3c\u7984": 85,
|
180 |
+
"\u5df4": 86,
|
181 |
+
"\u660e\u65e5\u5948\uff08\u5154\u5973\u90ce\uff09": 87,
|
182 |
+
"\u82b9\u9999": 88,
|
183 |
+
"\u7f8e\u54b2": 89,
|
184 |
+
"\u597d\u7f8e": 90,
|
185 |
+
"\u4f0a\u7ec7\uff08\u6cf3\u88c5\uff09": 91,
|
186 |
+
"\u661f\u91ce\uff08\u6cf3\u88c5\uff09": 92,
|
187 |
+
"\u693f": 93,
|
188 |
+
"\u827e\u7c73": 94,
|
189 |
+
"\u7231\u4e3d\u4e1d": 95,
|
190 |
+
"\u771f\u5e0c": 96,
|
191 |
+
"\u65e5\u97a0": 97,
|
192 |
+
"\u6cc9\uff08\u6cf3\u88c5\uff09": 98,
|
193 |
+
"\u67ab\u9999\uff08\u6b63\u6708\uff09": 99,
|
194 |
+
"\u548c\u9999": 100,
|
195 |
+
"\u82b1\u7ed8": 101,
|
196 |
+
"\u5343\u4e16\uff08\u6cf3\u88c5\uff09": 102,
|
197 |
+
"\u739b\u4e3d\uff08\u4f53\u64cd\u670d\uff09": 103,
|
198 |
+
"\u5fd7\u7f8e\u5b50": 104,
|
199 |
+
"\u5c0f\u96ea": 105,
|
200 |
+
"\u54cd": 106,
|
201 |
+
"\u5bab\u5b50": 107,
|
202 |
+
"\u5c0f\u7389": 108,
|
203 |
+
"\u67ab\u9999": 109,
|
204 |
+
"\u91ce\u5bab": 110,
|
205 |
+
"\u65e5\u5bcc\u7f8e": 111,
|
206 |
+
"\u9e64\u57ce\uff08\u6cf3\u88c5\uff09": 112,
|
207 |
+
"\u54cd\uff08\u5e94\u63f4\u56e2\uff09": 113,
|
208 |
+
"\u67ef\u6258\u8389": 114,
|
209 |
+
"\u65e5\u5411": 115,
|
210 |
+
"\u6850\u4e43": 116,
|
211 |
+
"\u7eb1\u7eeb\uff08\u79c1\u670d\uff09": 117,
|
212 |
+
"\u5343\u4e16": 118,
|
213 |
+
"\u5fe7": 119,
|
214 |
+
"\u65e5\u5948\uff08\u6cf3\u88c5\uff09": 120,
|
215 |
+
"\u6cc9\u5948": 121,
|
216 |
+
"\u7231\u8389": 122,
|
217 |
+
"\u83b2\u89c1": 123,
|
218 |
+
"\u6a31\u5b50": 124,
|
219 |
+
"\u6df3\u5b50": 125,
|
220 |
+
"\u6893\uff08\u6cf3\u88c5\uff09": 126,
|
221 |
+
"\u9065\u9999\uff08\u6b63\u6708\uff09": 127,
|
222 |
+
"\u4f18\u9999": 128,
|
223 |
+
"\u771f\u767d": 129,
|
224 |
+
"\u83f2\u5a1c": 130,
|
225 |
+
"\u6674": 131,
|
226 |
+
"\u65f6\uff08\u5154\u5973\u90ce\uff09": 132,
|
227 |
+
"\u6ee1": 133,
|
228 |
+
"\u82b1\u7ed8\uff08\u5723\u8bde\uff09": 134,
|
229 |
+
"\u7eb1\u7ec7": 135,
|
230 |
+
"\u65f6": 136,
|
231 |
+
"\u60e0": 137,
|
232 |
+
"\u6674\u5948\uff08\u6b63\u6708\uff09": 138,
|
233 |
+
"\u6674\u5948": 139,
|
234 |
+
"\u6cc9\u5948\uff08\u6cf3\u88c5\uff09": 140,
|
235 |
+
"\u6731\u8389": 141
|
236 |
+
}
|
237 |
+
}
|
diffusion/__init__.py
ADDED
File without changes
|
diffusion/data_loaders.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
import torch
|
7 |
+
import random
|
8 |
+
from utils import repeat_expand_2d
|
9 |
+
from tqdm import tqdm
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
def traverse_dir(
|
13 |
+
root_dir,
|
14 |
+
extensions,
|
15 |
+
amount=None,
|
16 |
+
str_include=None,
|
17 |
+
str_exclude=None,
|
18 |
+
is_pure=False,
|
19 |
+
is_sort=False,
|
20 |
+
is_ext=True):
|
21 |
+
|
22 |
+
file_list = []
|
23 |
+
cnt = 0
|
24 |
+
for root, _, files in os.walk(root_dir):
|
25 |
+
for file in files:
|
26 |
+
if any([file.endswith(f".{ext}") for ext in extensions]):
|
27 |
+
# path
|
28 |
+
mix_path = os.path.join(root, file)
|
29 |
+
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
|
30 |
+
|
31 |
+
# amount
|
32 |
+
if (amount is not None) and (cnt == amount):
|
33 |
+
if is_sort:
|
34 |
+
file_list.sort()
|
35 |
+
return file_list
|
36 |
+
|
37 |
+
# check string
|
38 |
+
if (str_include is not None) and (str_include not in pure_path):
|
39 |
+
continue
|
40 |
+
if (str_exclude is not None) and (str_exclude in pure_path):
|
41 |
+
continue
|
42 |
+
|
43 |
+
if not is_ext:
|
44 |
+
ext = pure_path.split('.')[-1]
|
45 |
+
pure_path = pure_path[:-(len(ext)+1)]
|
46 |
+
file_list.append(pure_path)
|
47 |
+
cnt += 1
|
48 |
+
if is_sort:
|
49 |
+
file_list.sort()
|
50 |
+
return file_list
|
51 |
+
|
52 |
+
|
53 |
+
def get_data_loaders(args, whole_audio=False):
|
54 |
+
data_train = AudioDataset(
|
55 |
+
filelists = args.data.training_files,
|
56 |
+
waveform_sec=args.data.duration,
|
57 |
+
hop_size=args.data.block_size,
|
58 |
+
sample_rate=args.data.sampling_rate,
|
59 |
+
load_all_data=args.train.cache_all_data,
|
60 |
+
whole_audio=whole_audio,
|
61 |
+
extensions=args.data.extensions,
|
62 |
+
n_spk=args.model.n_spk,
|
63 |
+
spk=args.spk,
|
64 |
+
device=args.train.cache_device,
|
65 |
+
fp16=args.train.cache_fp16,
|
66 |
+
use_aug=True)
|
67 |
+
loader_train = torch.utils.data.DataLoader(
|
68 |
+
data_train ,
|
69 |
+
batch_size=args.train.batch_size if not whole_audio else 1,
|
70 |
+
shuffle=True,
|
71 |
+
num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
|
72 |
+
persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
|
73 |
+
pin_memory=True if args.train.cache_device=='cpu' else False
|
74 |
+
)
|
75 |
+
data_valid = AudioDataset(
|
76 |
+
filelists = args.data.validation_files,
|
77 |
+
waveform_sec=args.data.duration,
|
78 |
+
hop_size=args.data.block_size,
|
79 |
+
sample_rate=args.data.sampling_rate,
|
80 |
+
load_all_data=args.train.cache_all_data,
|
81 |
+
whole_audio=True,
|
82 |
+
spk=args.spk,
|
83 |
+
extensions=args.data.extensions,
|
84 |
+
n_spk=args.model.n_spk)
|
85 |
+
loader_valid = torch.utils.data.DataLoader(
|
86 |
+
data_valid,
|
87 |
+
batch_size=1,
|
88 |
+
shuffle=False,
|
89 |
+
num_workers=0,
|
90 |
+
pin_memory=True
|
91 |
+
)
|
92 |
+
return loader_train, loader_valid
|
93 |
+
|
94 |
+
|
95 |
+
class AudioDataset(Dataset):
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
filelists,
|
99 |
+
waveform_sec,
|
100 |
+
hop_size,
|
101 |
+
sample_rate,
|
102 |
+
spk,
|
103 |
+
load_all_data=True,
|
104 |
+
whole_audio=False,
|
105 |
+
extensions=['wav'],
|
106 |
+
n_spk=1,
|
107 |
+
device='cpu',
|
108 |
+
fp16=False,
|
109 |
+
use_aug=False,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.waveform_sec = waveform_sec
|
114 |
+
self.sample_rate = sample_rate
|
115 |
+
self.hop_size = hop_size
|
116 |
+
self.filelists = filelists
|
117 |
+
self.whole_audio = whole_audio
|
118 |
+
self.use_aug = use_aug
|
119 |
+
self.data_buffer={}
|
120 |
+
self.pitch_aug_dict = {}
|
121 |
+
# np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
|
122 |
+
if load_all_data:
|
123 |
+
print('Load all the data filelists:', filelists)
|
124 |
+
else:
|
125 |
+
print('Load the f0, volume data filelists:', filelists)
|
126 |
+
with open(filelists,"r") as f:
|
127 |
+
self.paths = f.read().splitlines()
|
128 |
+
for name_ext in tqdm(self.paths, total=len(self.paths)):
|
129 |
+
name = os.path.splitext(name_ext)[0]
|
130 |
+
path_audio = name_ext
|
131 |
+
duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
|
132 |
+
|
133 |
+
path_f0 = name_ext + ".f0.npy"
|
134 |
+
f0,_ = np.load(path_f0,allow_pickle=True)
|
135 |
+
f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
|
136 |
+
|
137 |
+
path_volume = name_ext + ".vol.npy"
|
138 |
+
volume = np.load(path_volume)
|
139 |
+
volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
|
140 |
+
|
141 |
+
path_augvol = name_ext + ".aug_vol.npy"
|
142 |
+
aug_vol = np.load(path_augvol)
|
143 |
+
aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
|
144 |
+
|
145 |
+
if n_spk is not None and n_spk > 1:
|
146 |
+
spk_name = name_ext.split("/")[-2]
|
147 |
+
spk_id = spk[spk_name] if spk_name in spk else 0
|
148 |
+
if spk_id < 0 or spk_id >= n_spk:
|
149 |
+
raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
|
150 |
+
else:
|
151 |
+
spk_id = 0
|
152 |
+
spk_id = torch.LongTensor(np.array([spk_id])).to(device)
|
153 |
+
|
154 |
+
if load_all_data:
|
155 |
+
'''
|
156 |
+
audio, sr = librosa.load(path_audio, sr=self.sample_rate)
|
157 |
+
if len(audio.shape) > 1:
|
158 |
+
audio = librosa.to_mono(audio)
|
159 |
+
audio = torch.from_numpy(audio).to(device)
|
160 |
+
'''
|
161 |
+
path_mel = name_ext + ".mel.npy"
|
162 |
+
mel = np.load(path_mel)
|
163 |
+
mel = torch.from_numpy(mel).to(device)
|
164 |
+
|
165 |
+
path_augmel = name_ext + ".aug_mel.npy"
|
166 |
+
aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
|
167 |
+
aug_mel = np.array(aug_mel,dtype=float)
|
168 |
+
aug_mel = torch.from_numpy(aug_mel).to(device)
|
169 |
+
self.pitch_aug_dict[name_ext] = keyshift
|
170 |
+
|
171 |
+
path_units = name_ext + ".soft.pt"
|
172 |
+
units = torch.load(path_units).to(device)
|
173 |
+
units = units[0]
|
174 |
+
units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
|
175 |
+
|
176 |
+
if fp16:
|
177 |
+
mel = mel.half()
|
178 |
+
aug_mel = aug_mel.half()
|
179 |
+
units = units.half()
|
180 |
+
|
181 |
+
self.data_buffer[name_ext] = {
|
182 |
+
'duration': duration,
|
183 |
+
'mel': mel,
|
184 |
+
'aug_mel': aug_mel,
|
185 |
+
'units': units,
|
186 |
+
'f0': f0,
|
187 |
+
'volume': volume,
|
188 |
+
'aug_vol': aug_vol,
|
189 |
+
'spk_id': spk_id
|
190 |
+
}
|
191 |
+
else:
|
192 |
+
path_augmel = name_ext + ".aug_mel.npy"
|
193 |
+
aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
|
194 |
+
self.pitch_aug_dict[name_ext] = keyshift
|
195 |
+
self.data_buffer[name_ext] = {
|
196 |
+
'duration': duration,
|
197 |
+
'f0': f0,
|
198 |
+
'volume': volume,
|
199 |
+
'aug_vol': aug_vol,
|
200 |
+
'spk_id': spk_id
|
201 |
+
}
|
202 |
+
|
203 |
+
|
204 |
+
def __getitem__(self, file_idx):
|
205 |
+
name_ext = self.paths[file_idx]
|
206 |
+
data_buffer = self.data_buffer[name_ext]
|
207 |
+
# check duration. if too short, then skip
|
208 |
+
if data_buffer['duration'] < (self.waveform_sec + 0.1):
|
209 |
+
return self.__getitem__( (file_idx + 1) % len(self.paths))
|
210 |
+
|
211 |
+
# get item
|
212 |
+
return self.get_data(name_ext, data_buffer)
|
213 |
+
|
214 |
+
def get_data(self, name_ext, data_buffer):
|
215 |
+
name = os.path.splitext(name_ext)[0]
|
216 |
+
frame_resolution = self.hop_size / self.sample_rate
|
217 |
+
duration = data_buffer['duration']
|
218 |
+
waveform_sec = duration if self.whole_audio else self.waveform_sec
|
219 |
+
|
220 |
+
# load audio
|
221 |
+
idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
|
222 |
+
start_frame = int(idx_from / frame_resolution)
|
223 |
+
units_frame_len = int(waveform_sec / frame_resolution)
|
224 |
+
aug_flag = random.choice([True, False]) and self.use_aug
|
225 |
+
'''
|
226 |
+
audio = data_buffer.get('audio')
|
227 |
+
if audio is None:
|
228 |
+
path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
|
229 |
+
audio, sr = librosa.load(
|
230 |
+
path_audio,
|
231 |
+
sr = self.sample_rate,
|
232 |
+
offset = start_frame * frame_resolution,
|
233 |
+
duration = waveform_sec)
|
234 |
+
if len(audio.shape) > 1:
|
235 |
+
audio = librosa.to_mono(audio)
|
236 |
+
# clip audio into N seconds
|
237 |
+
audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
|
238 |
+
audio = torch.from_numpy(audio).float()
|
239 |
+
else:
|
240 |
+
audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
|
241 |
+
'''
|
242 |
+
# load mel
|
243 |
+
mel_key = 'aug_mel' if aug_flag else 'mel'
|
244 |
+
mel = data_buffer.get(mel_key)
|
245 |
+
if mel is None:
|
246 |
+
mel = name_ext + ".mel.npy"
|
247 |
+
mel = np.load(mel)
|
248 |
+
mel = mel[start_frame : start_frame + units_frame_len]
|
249 |
+
mel = torch.from_numpy(mel).float()
|
250 |
+
else:
|
251 |
+
mel = mel[start_frame : start_frame + units_frame_len]
|
252 |
+
|
253 |
+
# load f0
|
254 |
+
f0 = data_buffer.get('f0')
|
255 |
+
aug_shift = 0
|
256 |
+
if aug_flag:
|
257 |
+
aug_shift = self.pitch_aug_dict[name_ext]
|
258 |
+
f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
|
259 |
+
|
260 |
+
# load units
|
261 |
+
units = data_buffer.get('units')
|
262 |
+
if units is None:
|
263 |
+
path_units = name_ext + ".soft.pt"
|
264 |
+
units = torch.load(path_units)
|
265 |
+
units = units[0]
|
266 |
+
units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
|
267 |
+
|
268 |
+
units = units[start_frame : start_frame + units_frame_len]
|
269 |
+
|
270 |
+
# load volume
|
271 |
+
vol_key = 'aug_vol' if aug_flag else 'volume'
|
272 |
+
volume = data_buffer.get(vol_key)
|
273 |
+
volume_frames = volume[start_frame : start_frame + units_frame_len]
|
274 |
+
|
275 |
+
# load spk_id
|
276 |
+
spk_id = data_buffer.get('spk_id')
|
277 |
+
|
278 |
+
# load shift
|
279 |
+
aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
|
280 |
+
|
281 |
+
return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
|
282 |
+
|
283 |
+
def __len__(self):
|
284 |
+
return len(self.paths)
|
diffusion/diffusion.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from functools import partial
|
3 |
+
from inspect import isfunction
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import librosa.sequence
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
|
12 |
+
def exists(x):
|
13 |
+
return x is not None
|
14 |
+
|
15 |
+
|
16 |
+
def default(val, d):
|
17 |
+
if exists(val):
|
18 |
+
return val
|
19 |
+
return d() if isfunction(d) else d
|
20 |
+
|
21 |
+
|
22 |
+
def extract(a, t, x_shape):
|
23 |
+
b, *_ = t.shape
|
24 |
+
out = a.gather(-1, t)
|
25 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
26 |
+
|
27 |
+
|
28 |
+
def noise_like(shape, device, repeat=False):
|
29 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
30 |
+
noise = lambda: torch.randn(shape, device=device)
|
31 |
+
return repeat_noise() if repeat else noise()
|
32 |
+
|
33 |
+
|
34 |
+
def linear_beta_schedule(timesteps, max_beta=0.02):
|
35 |
+
"""
|
36 |
+
linear schedule
|
37 |
+
"""
|
38 |
+
betas = np.linspace(1e-4, max_beta, timesteps)
|
39 |
+
return betas
|
40 |
+
|
41 |
+
|
42 |
+
def cosine_beta_schedule(timesteps, s=0.008):
|
43 |
+
"""
|
44 |
+
cosine schedule
|
45 |
+
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
46 |
+
"""
|
47 |
+
steps = timesteps + 1
|
48 |
+
x = np.linspace(0, steps, steps)
|
49 |
+
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
|
50 |
+
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
51 |
+
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
52 |
+
return np.clip(betas, a_min=0, a_max=0.999)
|
53 |
+
|
54 |
+
|
55 |
+
beta_schedule = {
|
56 |
+
"cosine": cosine_beta_schedule,
|
57 |
+
"linear": linear_beta_schedule,
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
class GaussianDiffusion(nn.Module):
|
62 |
+
def __init__(self,
|
63 |
+
denoise_fn,
|
64 |
+
out_dims=128,
|
65 |
+
timesteps=1000,
|
66 |
+
k_step=1000,
|
67 |
+
max_beta=0.02,
|
68 |
+
spec_min=-12,
|
69 |
+
spec_max=2):
|
70 |
+
super().__init__()
|
71 |
+
self.denoise_fn = denoise_fn
|
72 |
+
self.out_dims = out_dims
|
73 |
+
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
|
74 |
+
|
75 |
+
alphas = 1. - betas
|
76 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
77 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
78 |
+
|
79 |
+
timesteps, = betas.shape
|
80 |
+
self.num_timesteps = int(timesteps)
|
81 |
+
self.k_step = k_step
|
82 |
+
|
83 |
+
self.noise_list = deque(maxlen=4)
|
84 |
+
|
85 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
86 |
+
|
87 |
+
self.register_buffer('betas', to_torch(betas))
|
88 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
89 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
90 |
+
|
91 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
92 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
93 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
94 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
95 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
96 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
97 |
+
|
98 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
99 |
+
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
|
100 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
101 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
102 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
103 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
104 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
105 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
106 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
107 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
108 |
+
|
109 |
+
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
|
110 |
+
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
|
111 |
+
|
112 |
+
def q_mean_variance(self, x_start, t):
|
113 |
+
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
114 |
+
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
|
115 |
+
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
116 |
+
return mean, variance, log_variance
|
117 |
+
|
118 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
119 |
+
return (
|
120 |
+
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
121 |
+
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
122 |
+
)
|
123 |
+
|
124 |
+
def q_posterior(self, x_start, x_t, t):
|
125 |
+
posterior_mean = (
|
126 |
+
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
127 |
+
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
128 |
+
)
|
129 |
+
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
|
130 |
+
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
|
131 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
132 |
+
|
133 |
+
def p_mean_variance(self, x, t, cond):
|
134 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
135 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
|
136 |
+
|
137 |
+
x_recon.clamp_(-1., 1.)
|
138 |
+
|
139 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
140 |
+
return model_mean, posterior_variance, posterior_log_variance
|
141 |
+
|
142 |
+
@torch.no_grad()
|
143 |
+
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
|
144 |
+
b, *_, device = *x.shape, x.device
|
145 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
|
146 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
147 |
+
# no noise when t == 0
|
148 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
149 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
|
153 |
+
"""
|
154 |
+
Use the PLMS method from
|
155 |
+
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
|
156 |
+
"""
|
157 |
+
|
158 |
+
def get_x_pred(x, noise_t, t):
|
159 |
+
a_t = extract(self.alphas_cumprod, t, x.shape)
|
160 |
+
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
|
161 |
+
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
162 |
+
|
163 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
|
164 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
165 |
+
x_pred = x + x_delta
|
166 |
+
|
167 |
+
return x_pred
|
168 |
+
|
169 |
+
noise_list = self.noise_list
|
170 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
171 |
+
|
172 |
+
if len(noise_list) == 0:
|
173 |
+
x_pred = get_x_pred(x, noise_pred, t)
|
174 |
+
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
|
175 |
+
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
|
176 |
+
elif len(noise_list) == 1:
|
177 |
+
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
|
178 |
+
elif len(noise_list) == 2:
|
179 |
+
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
|
180 |
+
else:
|
181 |
+
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
|
182 |
+
|
183 |
+
x_prev = get_x_pred(x, noise_pred_prime, t)
|
184 |
+
noise_list.append(noise_pred)
|
185 |
+
|
186 |
+
return x_prev
|
187 |
+
|
188 |
+
def q_sample(self, x_start, t, noise=None):
|
189 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
190 |
+
return (
|
191 |
+
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
192 |
+
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
193 |
+
)
|
194 |
+
|
195 |
+
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
|
196 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
197 |
+
|
198 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
199 |
+
x_recon = self.denoise_fn(x_noisy, t, cond)
|
200 |
+
|
201 |
+
if loss_type == 'l1':
|
202 |
+
loss = (noise - x_recon).abs().mean()
|
203 |
+
elif loss_type == 'l2':
|
204 |
+
loss = F.mse_loss(noise, x_recon)
|
205 |
+
else:
|
206 |
+
raise NotImplementedError()
|
207 |
+
|
208 |
+
return loss
|
209 |
+
|
210 |
+
def forward(self,
|
211 |
+
condition,
|
212 |
+
gt_spec=None,
|
213 |
+
infer=True,
|
214 |
+
infer_speedup=10,
|
215 |
+
method='dpm-solver',
|
216 |
+
k_step=300,
|
217 |
+
use_tqdm=True):
|
218 |
+
"""
|
219 |
+
conditioning diffusion, use fastspeech2 encoder output as the condition
|
220 |
+
"""
|
221 |
+
cond = condition.transpose(1, 2)
|
222 |
+
b, device = condition.shape[0], condition.device
|
223 |
+
|
224 |
+
if not infer:
|
225 |
+
spec = self.norm_spec(gt_spec)
|
226 |
+
t = torch.randint(0, self.k_step, (b,), device=device).long()
|
227 |
+
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
|
228 |
+
return self.p_losses(norm_spec, t, cond=cond)
|
229 |
+
else:
|
230 |
+
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
|
231 |
+
|
232 |
+
if gt_spec is None:
|
233 |
+
t = self.k_step
|
234 |
+
x = torch.randn(shape, device=device)
|
235 |
+
else:
|
236 |
+
t = k_step
|
237 |
+
norm_spec = self.norm_spec(gt_spec)
|
238 |
+
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
|
239 |
+
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
|
240 |
+
|
241 |
+
if method is not None and infer_speedup > 1:
|
242 |
+
if method == 'dpm-solver':
|
243 |
+
from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
|
244 |
+
# 1. Define the noise schedule.
|
245 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
|
246 |
+
|
247 |
+
# 2. Convert your discrete-time `model` to the continuous-time
|
248 |
+
# noise prediction model. Here is an example for a diffusion model
|
249 |
+
# `model` with the noise prediction type ("noise") .
|
250 |
+
def my_wrapper(fn):
|
251 |
+
def wrapped(x, t, **kwargs):
|
252 |
+
ret = fn(x, t, **kwargs)
|
253 |
+
if use_tqdm:
|
254 |
+
self.bar.update(1)
|
255 |
+
return ret
|
256 |
+
|
257 |
+
return wrapped
|
258 |
+
|
259 |
+
model_fn = model_wrapper(
|
260 |
+
my_wrapper(self.denoise_fn),
|
261 |
+
noise_schedule,
|
262 |
+
model_type="noise", # or "x_start" or "v" or "score"
|
263 |
+
model_kwargs={"cond": cond}
|
264 |
+
)
|
265 |
+
|
266 |
+
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
|
267 |
+
# (We recommend singlestep DPM-Solver for unconditional sampling)
|
268 |
+
# You can adjust the `steps` to balance the computation
|
269 |
+
# costs and the sample quality.
|
270 |
+
dpm_solver = DPM_Solver(model_fn, noise_schedule)
|
271 |
+
|
272 |
+
steps = t // infer_speedup
|
273 |
+
if use_tqdm:
|
274 |
+
self.bar = tqdm(desc="sample time step", total=steps)
|
275 |
+
x = dpm_solver.sample(
|
276 |
+
x,
|
277 |
+
steps=steps,
|
278 |
+
order=3,
|
279 |
+
skip_type="time_uniform",
|
280 |
+
method="singlestep",
|
281 |
+
)
|
282 |
+
if use_tqdm:
|
283 |
+
self.bar.close()
|
284 |
+
elif method == 'pndm':
|
285 |
+
self.noise_list = deque(maxlen=4)
|
286 |
+
if use_tqdm:
|
287 |
+
for i in tqdm(
|
288 |
+
reversed(range(0, t, infer_speedup)), desc='sample time step',
|
289 |
+
total=t // infer_speedup,
|
290 |
+
):
|
291 |
+
x = self.p_sample_plms(
|
292 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
293 |
+
infer_speedup, cond=cond
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
for i in reversed(range(0, t, infer_speedup)):
|
297 |
+
x = self.p_sample_plms(
|
298 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
299 |
+
infer_speedup, cond=cond
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
raise NotImplementedError(method)
|
303 |
+
else:
|
304 |
+
if use_tqdm:
|
305 |
+
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
|
306 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
307 |
+
else:
|
308 |
+
for i in reversed(range(0, t)):
|
309 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
310 |
+
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
|
311 |
+
return self.denorm_spec(x)
|
312 |
+
|
313 |
+
def norm_spec(self, x):
|
314 |
+
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
315 |
+
|
316 |
+
def denorm_spec(self, x):
|
317 |
+
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
diffusion/diffusion_onnx.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from functools import partial
|
3 |
+
from inspect import isfunction
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import librosa.sequence
|
6 |
+
import numpy as np
|
7 |
+
from torch.nn import Conv1d
|
8 |
+
from torch.nn import Mish
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
from tqdm import tqdm
|
12 |
+
import math
|
13 |
+
|
14 |
+
|
15 |
+
def exists(x):
|
16 |
+
return x is not None
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def extract(a, t):
|
26 |
+
return a[t].reshape((1, 1, 1, 1))
|
27 |
+
|
28 |
+
|
29 |
+
def noise_like(shape, device, repeat=False):
|
30 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
31 |
+
noise = lambda: torch.randn(shape, device=device)
|
32 |
+
return repeat_noise() if repeat else noise()
|
33 |
+
|
34 |
+
|
35 |
+
def linear_beta_schedule(timesteps, max_beta=0.02):
|
36 |
+
"""
|
37 |
+
linear schedule
|
38 |
+
"""
|
39 |
+
betas = np.linspace(1e-4, max_beta, timesteps)
|
40 |
+
return betas
|
41 |
+
|
42 |
+
|
43 |
+
def cosine_beta_schedule(timesteps, s=0.008):
|
44 |
+
"""
|
45 |
+
cosine schedule
|
46 |
+
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
47 |
+
"""
|
48 |
+
steps = timesteps + 1
|
49 |
+
x = np.linspace(0, steps, steps)
|
50 |
+
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
|
51 |
+
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
52 |
+
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
53 |
+
return np.clip(betas, a_min=0, a_max=0.999)
|
54 |
+
|
55 |
+
|
56 |
+
beta_schedule = {
|
57 |
+
"cosine": cosine_beta_schedule,
|
58 |
+
"linear": linear_beta_schedule,
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
def extract_1(a, t):
|
63 |
+
return a[t].reshape((1, 1, 1, 1))
|
64 |
+
|
65 |
+
|
66 |
+
def predict_stage0(noise_pred, noise_pred_prev):
|
67 |
+
return (noise_pred + noise_pred_prev) / 2
|
68 |
+
|
69 |
+
|
70 |
+
def predict_stage1(noise_pred, noise_list):
|
71 |
+
return (noise_pred * 3
|
72 |
+
- noise_list[-1]) / 2
|
73 |
+
|
74 |
+
|
75 |
+
def predict_stage2(noise_pred, noise_list):
|
76 |
+
return (noise_pred * 23
|
77 |
+
- noise_list[-1] * 16
|
78 |
+
+ noise_list[-2] * 5) / 12
|
79 |
+
|
80 |
+
|
81 |
+
def predict_stage3(noise_pred, noise_list):
|
82 |
+
return (noise_pred * 55
|
83 |
+
- noise_list[-1] * 59
|
84 |
+
+ noise_list[-2] * 37
|
85 |
+
- noise_list[-3] * 9) / 24
|
86 |
+
|
87 |
+
|
88 |
+
class SinusoidalPosEmb(nn.Module):
|
89 |
+
def __init__(self, dim):
|
90 |
+
super().__init__()
|
91 |
+
self.dim = dim
|
92 |
+
self.half_dim = dim // 2
|
93 |
+
self.emb = 9.21034037 / (self.half_dim - 1)
|
94 |
+
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
|
95 |
+
self.emb = self.emb.cpu()
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
emb = self.emb * x
|
99 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
100 |
+
return emb
|
101 |
+
|
102 |
+
|
103 |
+
class ResidualBlock(nn.Module):
|
104 |
+
def __init__(self, encoder_hidden, residual_channels, dilation):
|
105 |
+
super().__init__()
|
106 |
+
self.residual_channels = residual_channels
|
107 |
+
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
|
108 |
+
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
|
109 |
+
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
110 |
+
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
|
111 |
+
|
112 |
+
def forward(self, x, conditioner, diffusion_step):
|
113 |
+
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
114 |
+
conditioner = self.conditioner_projection(conditioner)
|
115 |
+
y = x + diffusion_step
|
116 |
+
y = self.dilated_conv(y) + conditioner
|
117 |
+
|
118 |
+
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
119 |
+
|
120 |
+
y = torch.sigmoid(gate) * torch.tanh(filter_1)
|
121 |
+
y = self.output_projection(y)
|
122 |
+
|
123 |
+
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
124 |
+
|
125 |
+
return (x + residual) / 1.41421356, skip
|
126 |
+
|
127 |
+
|
128 |
+
class DiffNet(nn.Module):
|
129 |
+
def __init__(self, in_dims, n_layers, n_chans, n_hidden):
|
130 |
+
super().__init__()
|
131 |
+
self.encoder_hidden = n_hidden
|
132 |
+
self.residual_layers = n_layers
|
133 |
+
self.residual_channels = n_chans
|
134 |
+
self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
|
135 |
+
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
|
136 |
+
dim = self.residual_channels
|
137 |
+
self.mlp = nn.Sequential(
|
138 |
+
nn.Linear(dim, dim * 4),
|
139 |
+
Mish(),
|
140 |
+
nn.Linear(dim * 4, dim)
|
141 |
+
)
|
142 |
+
self.residual_layers = nn.ModuleList([
|
143 |
+
ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
|
144 |
+
for i in range(self.residual_layers)
|
145 |
+
])
|
146 |
+
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
|
147 |
+
self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
|
148 |
+
nn.init.zeros_(self.output_projection.weight)
|
149 |
+
|
150 |
+
def forward(self, spec, diffusion_step, cond):
|
151 |
+
x = spec.squeeze(0)
|
152 |
+
x = self.input_projection(x) # x [B, residual_channel, T]
|
153 |
+
x = F.relu(x)
|
154 |
+
# skip = torch.randn_like(x)
|
155 |
+
diffusion_step = diffusion_step.float()
|
156 |
+
diffusion_step = self.diffusion_embedding(diffusion_step)
|
157 |
+
diffusion_step = self.mlp(diffusion_step)
|
158 |
+
|
159 |
+
x, skip = self.residual_layers[0](x, cond, diffusion_step)
|
160 |
+
# noinspection PyTypeChecker
|
161 |
+
for layer in self.residual_layers[1:]:
|
162 |
+
x, skip_connection = layer.forward(x, cond, diffusion_step)
|
163 |
+
skip = skip + skip_connection
|
164 |
+
x = skip / math.sqrt(len(self.residual_layers))
|
165 |
+
x = self.skip_projection(x)
|
166 |
+
x = F.relu(x)
|
167 |
+
x = self.output_projection(x) # [B, 80, T]
|
168 |
+
return x.unsqueeze(1)
|
169 |
+
|
170 |
+
|
171 |
+
class AfterDiffusion(nn.Module):
|
172 |
+
def __init__(self, spec_max, spec_min, v_type='a'):
|
173 |
+
super().__init__()
|
174 |
+
self.spec_max = spec_max
|
175 |
+
self.spec_min = spec_min
|
176 |
+
self.type = v_type
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
x = x.squeeze(1).permute(0, 2, 1)
|
180 |
+
mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
181 |
+
if self.type == 'nsf-hifigan-log10':
|
182 |
+
mel_out = mel_out * 0.434294
|
183 |
+
return mel_out.transpose(2, 1)
|
184 |
+
|
185 |
+
|
186 |
+
class Pred(nn.Module):
|
187 |
+
def __init__(self, alphas_cumprod):
|
188 |
+
super().__init__()
|
189 |
+
self.alphas_cumprod = alphas_cumprod
|
190 |
+
|
191 |
+
def forward(self, x_1, noise_t, t_1, t_prev):
|
192 |
+
a_t = extract(self.alphas_cumprod, t_1).cpu()
|
193 |
+
a_prev = extract(self.alphas_cumprod, t_prev).cpu()
|
194 |
+
a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
|
195 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
|
196 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
197 |
+
x_pred = x_1 + x_delta.cpu()
|
198 |
+
|
199 |
+
return x_pred
|
200 |
+
|
201 |
+
|
202 |
+
class GaussianDiffusion(nn.Module):
|
203 |
+
def __init__(self,
|
204 |
+
out_dims=128,
|
205 |
+
n_layers=20,
|
206 |
+
n_chans=384,
|
207 |
+
n_hidden=256,
|
208 |
+
timesteps=1000,
|
209 |
+
k_step=1000,
|
210 |
+
max_beta=0.02,
|
211 |
+
spec_min=-12,
|
212 |
+
spec_max=2):
|
213 |
+
super().__init__()
|
214 |
+
self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
|
215 |
+
self.out_dims = out_dims
|
216 |
+
self.mel_bins = out_dims
|
217 |
+
self.n_hidden = n_hidden
|
218 |
+
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
|
219 |
+
|
220 |
+
alphas = 1. - betas
|
221 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
222 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
223 |
+
timesteps, = betas.shape
|
224 |
+
self.num_timesteps = int(timesteps)
|
225 |
+
self.k_step = k_step
|
226 |
+
|
227 |
+
self.noise_list = deque(maxlen=4)
|
228 |
+
|
229 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
230 |
+
|
231 |
+
self.register_buffer('betas', to_torch(betas))
|
232 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
233 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
234 |
+
|
235 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
236 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
237 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
238 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
239 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
240 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
241 |
+
|
242 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
243 |
+
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
|
244 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
245 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
246 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
247 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
248 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
249 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
250 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
251 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
252 |
+
|
253 |
+
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
|
254 |
+
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
|
255 |
+
self.ad = AfterDiffusion(self.spec_max, self.spec_min)
|
256 |
+
self.xp = Pred(self.alphas_cumprod)
|
257 |
+
|
258 |
+
def q_mean_variance(self, x_start, t):
|
259 |
+
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
260 |
+
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
|
261 |
+
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
262 |
+
return mean, variance, log_variance
|
263 |
+
|
264 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
265 |
+
return (
|
266 |
+
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
267 |
+
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
268 |
+
)
|
269 |
+
|
270 |
+
def q_posterior(self, x_start, x_t, t):
|
271 |
+
posterior_mean = (
|
272 |
+
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
273 |
+
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
274 |
+
)
|
275 |
+
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
|
276 |
+
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
|
277 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
278 |
+
|
279 |
+
def p_mean_variance(self, x, t, cond):
|
280 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
281 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
|
282 |
+
|
283 |
+
x_recon.clamp_(-1., 1.)
|
284 |
+
|
285 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
286 |
+
return model_mean, posterior_variance, posterior_log_variance
|
287 |
+
|
288 |
+
@torch.no_grad()
|
289 |
+
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
|
290 |
+
b, *_, device = *x.shape, x.device
|
291 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
|
292 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
293 |
+
# no noise when t == 0
|
294 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
295 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
296 |
+
|
297 |
+
@torch.no_grad()
|
298 |
+
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
|
299 |
+
"""
|
300 |
+
Use the PLMS method from
|
301 |
+
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
|
302 |
+
"""
|
303 |
+
|
304 |
+
def get_x_pred(x, noise_t, t):
|
305 |
+
a_t = extract(self.alphas_cumprod, t)
|
306 |
+
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
|
307 |
+
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
308 |
+
|
309 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
|
310 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
311 |
+
x_pred = x + x_delta
|
312 |
+
|
313 |
+
return x_pred
|
314 |
+
|
315 |
+
noise_list = self.noise_list
|
316 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
317 |
+
|
318 |
+
if len(noise_list) == 0:
|
319 |
+
x_pred = get_x_pred(x, noise_pred, t)
|
320 |
+
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
|
321 |
+
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
|
322 |
+
elif len(noise_list) == 1:
|
323 |
+
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
|
324 |
+
elif len(noise_list) == 2:
|
325 |
+
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
|
326 |
+
else:
|
327 |
+
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
|
328 |
+
|
329 |
+
x_prev = get_x_pred(x, noise_pred_prime, t)
|
330 |
+
noise_list.append(noise_pred)
|
331 |
+
|
332 |
+
return x_prev
|
333 |
+
|
334 |
+
def q_sample(self, x_start, t, noise=None):
|
335 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
336 |
+
return (
|
337 |
+
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
338 |
+
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
339 |
+
)
|
340 |
+
|
341 |
+
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
|
342 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
343 |
+
|
344 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
345 |
+
x_recon = self.denoise_fn(x_noisy, t, cond)
|
346 |
+
|
347 |
+
if loss_type == 'l1':
|
348 |
+
loss = (noise - x_recon).abs().mean()
|
349 |
+
elif loss_type == 'l2':
|
350 |
+
loss = F.mse_loss(noise, x_recon)
|
351 |
+
else:
|
352 |
+
raise NotImplementedError()
|
353 |
+
|
354 |
+
return loss
|
355 |
+
|
356 |
+
def org_forward(self,
|
357 |
+
condition,
|
358 |
+
init_noise=None,
|
359 |
+
gt_spec=None,
|
360 |
+
infer=True,
|
361 |
+
infer_speedup=100,
|
362 |
+
method='pndm',
|
363 |
+
k_step=1000,
|
364 |
+
use_tqdm=True):
|
365 |
+
"""
|
366 |
+
conditioning diffusion, use fastspeech2 encoder output as the condition
|
367 |
+
"""
|
368 |
+
cond = condition
|
369 |
+
b, device = condition.shape[0], condition.device
|
370 |
+
if not infer:
|
371 |
+
spec = self.norm_spec(gt_spec)
|
372 |
+
t = torch.randint(0, self.k_step, (b,), device=device).long()
|
373 |
+
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
|
374 |
+
return self.p_losses(norm_spec, t, cond=cond)
|
375 |
+
else:
|
376 |
+
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
|
377 |
+
|
378 |
+
if gt_spec is None:
|
379 |
+
t = self.k_step
|
380 |
+
if init_noise is None:
|
381 |
+
x = torch.randn(shape, device=device)
|
382 |
+
else:
|
383 |
+
x = init_noise
|
384 |
+
else:
|
385 |
+
t = k_step
|
386 |
+
norm_spec = self.norm_spec(gt_spec)
|
387 |
+
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
|
388 |
+
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
|
389 |
+
|
390 |
+
if method is not None and infer_speedup > 1:
|
391 |
+
if method == 'dpm-solver':
|
392 |
+
from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
|
393 |
+
# 1. Define the noise schedule.
|
394 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
|
395 |
+
|
396 |
+
# 2. Convert your discrete-time `model` to the continuous-time
|
397 |
+
# noise prediction model. Here is an example for a diffusion model
|
398 |
+
# `model` with the noise prediction type ("noise") .
|
399 |
+
def my_wrapper(fn):
|
400 |
+
def wrapped(x, t, **kwargs):
|
401 |
+
ret = fn(x, t, **kwargs)
|
402 |
+
if use_tqdm:
|
403 |
+
self.bar.update(1)
|
404 |
+
return ret
|
405 |
+
|
406 |
+
return wrapped
|
407 |
+
|
408 |
+
model_fn = model_wrapper(
|
409 |
+
my_wrapper(self.denoise_fn),
|
410 |
+
noise_schedule,
|
411 |
+
model_type="noise", # or "x_start" or "v" or "score"
|
412 |
+
model_kwargs={"cond": cond}
|
413 |
+
)
|
414 |
+
|
415 |
+
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
|
416 |
+
# (We recommend singlestep DPM-Solver for unconditional sampling)
|
417 |
+
# You can adjust the `steps` to balance the computation
|
418 |
+
# costs and the sample quality.
|
419 |
+
dpm_solver = DPM_Solver(model_fn, noise_schedule)
|
420 |
+
|
421 |
+
steps = t // infer_speedup
|
422 |
+
if use_tqdm:
|
423 |
+
self.bar = tqdm(desc="sample time step", total=steps)
|
424 |
+
x = dpm_solver.sample(
|
425 |
+
x,
|
426 |
+
steps=steps,
|
427 |
+
order=3,
|
428 |
+
skip_type="time_uniform",
|
429 |
+
method="singlestep",
|
430 |
+
)
|
431 |
+
if use_tqdm:
|
432 |
+
self.bar.close()
|
433 |
+
elif method == 'pndm':
|
434 |
+
self.noise_list = deque(maxlen=4)
|
435 |
+
if use_tqdm:
|
436 |
+
for i in tqdm(
|
437 |
+
reversed(range(0, t, infer_speedup)), desc='sample time step',
|
438 |
+
total=t // infer_speedup,
|
439 |
+
):
|
440 |
+
x = self.p_sample_plms(
|
441 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
442 |
+
infer_speedup, cond=cond
|
443 |
+
)
|
444 |
+
else:
|
445 |
+
for i in reversed(range(0, t, infer_speedup)):
|
446 |
+
x = self.p_sample_plms(
|
447 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
448 |
+
infer_speedup, cond=cond
|
449 |
+
)
|
450 |
+
else:
|
451 |
+
raise NotImplementedError(method)
|
452 |
+
else:
|
453 |
+
if use_tqdm:
|
454 |
+
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
|
455 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
456 |
+
else:
|
457 |
+
for i in reversed(range(0, t)):
|
458 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
459 |
+
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
|
460 |
+
return self.denorm_spec(x).transpose(2, 1)
|
461 |
+
|
462 |
+
def norm_spec(self, x):
|
463 |
+
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
464 |
+
|
465 |
+
def denorm_spec(self, x):
|
466 |
+
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
467 |
+
|
468 |
+
def get_x_pred(self, x_1, noise_t, t_1, t_prev):
|
469 |
+
a_t = extract(self.alphas_cumprod, t_1)
|
470 |
+
a_prev = extract(self.alphas_cumprod, t_prev)
|
471 |
+
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
472 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
|
473 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
474 |
+
x_pred = x_1 + x_delta
|
475 |
+
return x_pred
|
476 |
+
|
477 |
+
def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
|
478 |
+
cond = torch.randn([1, self.n_hidden, 10]).cpu()
|
479 |
+
if init_noise is None:
|
480 |
+
x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
|
481 |
+
else:
|
482 |
+
x = init_noise
|
483 |
+
pndms = 100
|
484 |
+
|
485 |
+
org_y_x = self.org_forward(cond, init_noise=x)
|
486 |
+
|
487 |
+
device = cond.device
|
488 |
+
n_frames = cond.shape[2]
|
489 |
+
step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
|
490 |
+
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
|
491 |
+
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
|
492 |
+
|
493 |
+
ot = step_range[0]
|
494 |
+
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
|
495 |
+
if export_denoise:
|
496 |
+
torch.onnx.export(
|
497 |
+
self.denoise_fn,
|
498 |
+
(x.cpu(), ot_1.cpu(), cond.cpu()),
|
499 |
+
f"{project_name}_denoise.onnx",
|
500 |
+
input_names=["noise", "time", "condition"],
|
501 |
+
output_names=["noise_pred"],
|
502 |
+
dynamic_axes={
|
503 |
+
"noise": [3],
|
504 |
+
"condition": [2]
|
505 |
+
},
|
506 |
+
opset_version=16
|
507 |
+
)
|
508 |
+
|
509 |
+
for t in step_range:
|
510 |
+
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
|
511 |
+
noise_pred = self.denoise_fn(x, t_1, cond)
|
512 |
+
t_prev = t_1 - pndms
|
513 |
+
t_prev = t_prev * (t_prev > 0)
|
514 |
+
if plms_noise_stage == 0:
|
515 |
+
if export_pred:
|
516 |
+
torch.onnx.export(
|
517 |
+
self.xp,
|
518 |
+
(x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
|
519 |
+
f"{project_name}_pred.onnx",
|
520 |
+
input_names=["noise", "noise_pred", "time", "time_prev"],
|
521 |
+
output_names=["noise_pred_o"],
|
522 |
+
dynamic_axes={
|
523 |
+
"noise": [3],
|
524 |
+
"noise_pred": [3]
|
525 |
+
},
|
526 |
+
opset_version=16
|
527 |
+
)
|
528 |
+
|
529 |
+
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
|
530 |
+
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
|
531 |
+
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
|
532 |
+
|
533 |
+
elif plms_noise_stage == 1:
|
534 |
+
noise_pred_prime = predict_stage1(noise_pred, noise_list)
|
535 |
+
|
536 |
+
elif plms_noise_stage == 2:
|
537 |
+
noise_pred_prime = predict_stage2(noise_pred, noise_list)
|
538 |
+
|
539 |
+
else:
|
540 |
+
noise_pred_prime = predict_stage3(noise_pred, noise_list)
|
541 |
+
|
542 |
+
noise_pred = noise_pred.unsqueeze(0)
|
543 |
+
|
544 |
+
if plms_noise_stage < 3:
|
545 |
+
noise_list = torch.cat((noise_list, noise_pred), dim=0)
|
546 |
+
plms_noise_stage = plms_noise_stage + 1
|
547 |
+
|
548 |
+
else:
|
549 |
+
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
|
550 |
+
|
551 |
+
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
|
552 |
+
if export_after:
|
553 |
+
torch.onnx.export(
|
554 |
+
self.ad,
|
555 |
+
x.cpu(),
|
556 |
+
f"{project_name}_after.onnx",
|
557 |
+
input_names=["x"],
|
558 |
+
output_names=["mel_out"],
|
559 |
+
dynamic_axes={
|
560 |
+
"x": [3]
|
561 |
+
},
|
562 |
+
opset_version=16
|
563 |
+
)
|
564 |
+
x = self.ad(x)
|
565 |
+
|
566 |
+
print((x == org_y_x).all())
|
567 |
+
return x
|
568 |
+
|
569 |
+
def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
|
570 |
+
cond = condition
|
571 |
+
x = init_noise
|
572 |
+
|
573 |
+
device = cond.device
|
574 |
+
n_frames = cond.shape[2]
|
575 |
+
step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
|
576 |
+
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
|
577 |
+
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
|
578 |
+
|
579 |
+
ot = step_range[0]
|
580 |
+
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
|
581 |
+
|
582 |
+
for t in step_range:
|
583 |
+
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
|
584 |
+
noise_pred = self.denoise_fn(x, t_1, cond)
|
585 |
+
t_prev = t_1 - pndms
|
586 |
+
t_prev = t_prev * (t_prev > 0)
|
587 |
+
if plms_noise_stage == 0:
|
588 |
+
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
|
589 |
+
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
|
590 |
+
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
|
591 |
+
|
592 |
+
elif plms_noise_stage == 1:
|
593 |
+
noise_pred_prime = predict_stage1(noise_pred, noise_list)
|
594 |
+
|
595 |
+
elif plms_noise_stage == 2:
|
596 |
+
noise_pred_prime = predict_stage2(noise_pred, noise_list)
|
597 |
+
|
598 |
+
else:
|
599 |
+
noise_pred_prime = predict_stage3(noise_pred, noise_list)
|
600 |
+
|
601 |
+
noise_pred = noise_pred.unsqueeze(0)
|
602 |
+
|
603 |
+
if plms_noise_stage < 3:
|
604 |
+
noise_list = torch.cat((noise_list, noise_pred), dim=0)
|
605 |
+
plms_noise_stage = plms_noise_stage + 1
|
606 |
+
|
607 |
+
else:
|
608 |
+
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
|
609 |
+
|
610 |
+
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
|
611 |
+
x = self.ad(x)
|
612 |
+
return x
|
diffusion/dpm_solver_pytorch.py
ADDED
@@ -0,0 +1,1201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class NoiseScheduleVP:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
schedule='discrete',
|
10 |
+
betas=None,
|
11 |
+
alphas_cumprod=None,
|
12 |
+
continuous_beta_0=0.1,
|
13 |
+
continuous_beta_1=20.,
|
14 |
+
):
|
15 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
16 |
+
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
|
22 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
23 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
24 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
25 |
+
|
26 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
27 |
+
sigma_t = self.marginal_std(t)
|
28 |
+
lambda_t = self.marginal_lambda(t)
|
29 |
+
|
30 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
31 |
+
|
32 |
+
t = self.inverse_lambda(lambda_t)
|
33 |
+
|
34 |
+
===============================================================
|
35 |
+
|
36 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
37 |
+
|
38 |
+
1. For discrete-time DPMs:
|
39 |
+
|
40 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
41 |
+
t_i = (i + 1) / N
|
42 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
43 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
47 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
48 |
+
|
49 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
50 |
+
|
51 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
52 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
53 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
54 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
55 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
56 |
+
and
|
57 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
58 |
+
|
59 |
+
|
60 |
+
2. For continuous-time DPMs:
|
61 |
+
|
62 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
63 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
64 |
+
|
65 |
+
Args:
|
66 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
67 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
68 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
69 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
70 |
+
T: A `float` number. The ending time of the forward process.
|
71 |
+
|
72 |
+
===============================================================
|
73 |
+
|
74 |
+
Args:
|
75 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
76 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
77 |
+
Returns:
|
78 |
+
A wrapper object of the forward SDE (VP type).
|
79 |
+
|
80 |
+
===============================================================
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
85 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
86 |
+
|
87 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
88 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
89 |
+
|
90 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
91 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
92 |
+
|
93 |
+
"""
|
94 |
+
|
95 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
96 |
+
raise ValueError(
|
97 |
+
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
98 |
+
schedule))
|
99 |
+
|
100 |
+
self.schedule = schedule
|
101 |
+
if schedule == 'discrete':
|
102 |
+
if betas is not None:
|
103 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
104 |
+
else:
|
105 |
+
assert alphas_cumprod is not None
|
106 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
107 |
+
self.total_N = len(log_alphas)
|
108 |
+
self.T = 1.
|
109 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
110 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
111 |
+
else:
|
112 |
+
self.total_N = 1000
|
113 |
+
self.beta_0 = continuous_beta_0
|
114 |
+
self.beta_1 = continuous_beta_1
|
115 |
+
self.cosine_s = 0.008
|
116 |
+
self.cosine_beta_max = 999.
|
117 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
118 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
119 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
120 |
+
self.schedule = schedule
|
121 |
+
if schedule == 'cosine':
|
122 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
123 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
124 |
+
self.T = 0.9946
|
125 |
+
else:
|
126 |
+
self.T = 1.
|
127 |
+
|
128 |
+
def marginal_log_mean_coeff(self, t):
|
129 |
+
"""
|
130 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
131 |
+
"""
|
132 |
+
if self.schedule == 'discrete':
|
133 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
134 |
+
self.log_alpha_array.to(t.device)).reshape((-1))
|
135 |
+
elif self.schedule == 'linear':
|
136 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
137 |
+
elif self.schedule == 'cosine':
|
138 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
139 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
140 |
+
return log_alpha_t
|
141 |
+
|
142 |
+
def marginal_alpha(self, t):
|
143 |
+
"""
|
144 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
145 |
+
"""
|
146 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
147 |
+
|
148 |
+
def marginal_std(self, t):
|
149 |
+
"""
|
150 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
151 |
+
"""
|
152 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
153 |
+
|
154 |
+
def marginal_lambda(self, t):
|
155 |
+
"""
|
156 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
157 |
+
"""
|
158 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
159 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
160 |
+
return log_mean_coeff - log_std
|
161 |
+
|
162 |
+
def inverse_lambda(self, lamb):
|
163 |
+
"""
|
164 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
165 |
+
"""
|
166 |
+
if self.schedule == 'linear':
|
167 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
168 |
+
Delta = self.beta_0 ** 2 + tmp
|
169 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
170 |
+
elif self.schedule == 'discrete':
|
171 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
172 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
173 |
+
torch.flip(self.t_array.to(lamb.device), [1]))
|
174 |
+
return t.reshape((-1,))
|
175 |
+
else:
|
176 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
177 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
178 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
179 |
+
t = t_fn(log_alpha)
|
180 |
+
return t
|
181 |
+
|
182 |
+
|
183 |
+
def model_wrapper(
|
184 |
+
model,
|
185 |
+
noise_schedule,
|
186 |
+
model_type="noise",
|
187 |
+
model_kwargs={},
|
188 |
+
guidance_type="uncond",
|
189 |
+
condition=None,
|
190 |
+
unconditional_condition=None,
|
191 |
+
guidance_scale=1.,
|
192 |
+
classifier_fn=None,
|
193 |
+
classifier_kwargs={},
|
194 |
+
):
|
195 |
+
"""Create a wrapper function for the noise prediction model.
|
196 |
+
|
197 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
198 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
199 |
+
|
200 |
+
We support four types of the diffusion model by setting `model_type`:
|
201 |
+
|
202 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
203 |
+
|
204 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
205 |
+
|
206 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
207 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
208 |
+
|
209 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
210 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
211 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
212 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
213 |
+
|
214 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
215 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
216 |
+
```
|
217 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
218 |
+
```
|
219 |
+
|
220 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
221 |
+
1. "uncond": unconditional sampling by DPMs.
|
222 |
+
The input `model` has the following format:
|
223 |
+
``
|
224 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
225 |
+
``
|
226 |
+
|
227 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
228 |
+
The input `model` has the following format:
|
229 |
+
``
|
230 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
231 |
+
``
|
232 |
+
|
233 |
+
The input `classifier_fn` has the following format:
|
234 |
+
``
|
235 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
236 |
+
``
|
237 |
+
|
238 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
239 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
240 |
+
|
241 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
242 |
+
The input `model` has the following format:
|
243 |
+
``
|
244 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
245 |
+
``
|
246 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
247 |
+
|
248 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
249 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
250 |
+
|
251 |
+
|
252 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
253 |
+
or continuous-time labels (i.e. epsilon to T).
|
254 |
+
|
255 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
256 |
+
``
|
257 |
+
def model_fn(x, t_continuous) -> noise:
|
258 |
+
t_input = get_model_input_time(t_continuous)
|
259 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
260 |
+
``
|
261 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
262 |
+
|
263 |
+
===============================================================
|
264 |
+
|
265 |
+
Args:
|
266 |
+
model: A diffusion model with the corresponding format described above.
|
267 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
268 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
269 |
+
"noise" or "x_start" or "v" or "score".
|
270 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
271 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
272 |
+
"uncond" or "classifier" or "classifier-free".
|
273 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
274 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
275 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
276 |
+
Only used for "classifier-free" guidance type.
|
277 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
278 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
279 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
280 |
+
Returns:
|
281 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
282 |
+
"""
|
283 |
+
|
284 |
+
def get_model_input_time(t_continuous):
|
285 |
+
"""
|
286 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
287 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
288 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
289 |
+
"""
|
290 |
+
if noise_schedule.schedule == 'discrete':
|
291 |
+
return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
|
292 |
+
else:
|
293 |
+
return t_continuous
|
294 |
+
|
295 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
296 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
297 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
298 |
+
t_input = get_model_input_time(t_continuous)
|
299 |
+
if cond is None:
|
300 |
+
output = model(x, t_input, **model_kwargs)
|
301 |
+
else:
|
302 |
+
output = model(x, t_input, cond, **model_kwargs)
|
303 |
+
if model_type == "noise":
|
304 |
+
return output
|
305 |
+
elif model_type == "x_start":
|
306 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
307 |
+
dims = x.dim()
|
308 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
309 |
+
elif model_type == "v":
|
310 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
311 |
+
dims = x.dim()
|
312 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
313 |
+
elif model_type == "score":
|
314 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
315 |
+
dims = x.dim()
|
316 |
+
return -expand_dims(sigma_t, dims) * output
|
317 |
+
|
318 |
+
def cond_grad_fn(x, t_input):
|
319 |
+
"""
|
320 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
321 |
+
"""
|
322 |
+
with torch.enable_grad():
|
323 |
+
x_in = x.detach().requires_grad_(True)
|
324 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
325 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
326 |
+
|
327 |
+
def model_fn(x, t_continuous):
|
328 |
+
"""
|
329 |
+
The noise predicition model function that is used for DPM-Solver.
|
330 |
+
"""
|
331 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
332 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
333 |
+
if guidance_type == "uncond":
|
334 |
+
return noise_pred_fn(x, t_continuous)
|
335 |
+
elif guidance_type == "classifier":
|
336 |
+
assert classifier_fn is not None
|
337 |
+
t_input = get_model_input_time(t_continuous)
|
338 |
+
cond_grad = cond_grad_fn(x, t_input)
|
339 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
340 |
+
noise = noise_pred_fn(x, t_continuous)
|
341 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
342 |
+
elif guidance_type == "classifier-free":
|
343 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
344 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
345 |
+
else:
|
346 |
+
x_in = torch.cat([x] * 2)
|
347 |
+
t_in = torch.cat([t_continuous] * 2)
|
348 |
+
c_in = torch.cat([unconditional_condition, condition])
|
349 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
350 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
351 |
+
|
352 |
+
assert model_type in ["noise", "x_start", "v"]
|
353 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
354 |
+
return model_fn
|
355 |
+
|
356 |
+
|
357 |
+
class DPM_Solver:
|
358 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
359 |
+
"""Construct a DPM-Solver.
|
360 |
+
|
361 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
362 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
363 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
364 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
365 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
369 |
+
``
|
370 |
+
def model_fn(x, t_continuous):
|
371 |
+
return noise
|
372 |
+
``
|
373 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
374 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
375 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
376 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
377 |
+
|
378 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
379 |
+
"""
|
380 |
+
self.model = model_fn
|
381 |
+
self.noise_schedule = noise_schedule
|
382 |
+
self.predict_x0 = predict_x0
|
383 |
+
self.thresholding = thresholding
|
384 |
+
self.max_val = max_val
|
385 |
+
|
386 |
+
def noise_prediction_fn(self, x, t):
|
387 |
+
"""
|
388 |
+
Return the noise prediction model.
|
389 |
+
"""
|
390 |
+
return self.model(x, t)
|
391 |
+
|
392 |
+
def data_prediction_fn(self, x, t):
|
393 |
+
"""
|
394 |
+
Return the data prediction model (with thresholding).
|
395 |
+
"""
|
396 |
+
noise = self.noise_prediction_fn(x, t)
|
397 |
+
dims = x.dim()
|
398 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
399 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
400 |
+
if self.thresholding:
|
401 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
402 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
403 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
404 |
+
x0 = torch.clamp(x0, -s, s) / s
|
405 |
+
return x0
|
406 |
+
|
407 |
+
def model_fn(self, x, t):
|
408 |
+
"""
|
409 |
+
Convert the model to the noise prediction model or the data prediction model.
|
410 |
+
"""
|
411 |
+
if self.predict_x0:
|
412 |
+
return self.data_prediction_fn(x, t)
|
413 |
+
else:
|
414 |
+
return self.noise_prediction_fn(x, t)
|
415 |
+
|
416 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
417 |
+
"""Compute the intermediate time steps for sampling.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
421 |
+
- 'logSNR': uniform logSNR for the time steps.
|
422 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
423 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
424 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
425 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
426 |
+
N: A `int`. The total number of the spacing of the time steps.
|
427 |
+
device: A torch device.
|
428 |
+
Returns:
|
429 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
430 |
+
"""
|
431 |
+
if skip_type == 'logSNR':
|
432 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
433 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
434 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
435 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
436 |
+
elif skip_type == 'time_uniform':
|
437 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
438 |
+
elif skip_type == 'time_quadratic':
|
439 |
+
t_order = 2
|
440 |
+
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
441 |
+
return t
|
442 |
+
else:
|
443 |
+
raise ValueError(
|
444 |
+
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
445 |
+
|
446 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
447 |
+
"""
|
448 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
449 |
+
|
450 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
451 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
452 |
+
- If order == 1:
|
453 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
454 |
+
- If order == 2:
|
455 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
456 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
457 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
458 |
+
- If order == 3:
|
459 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
460 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
461 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
462 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
463 |
+
|
464 |
+
============================================
|
465 |
+
Args:
|
466 |
+
order: A `int`. The max order for the solver (2 or 3).
|
467 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
468 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
469 |
+
- 'logSNR': uniform logSNR for the time steps.
|
470 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
471 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
472 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
473 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
474 |
+
device: A torch device.
|
475 |
+
Returns:
|
476 |
+
orders: A list of the solver order of each step.
|
477 |
+
"""
|
478 |
+
if order == 3:
|
479 |
+
K = steps // 3 + 1
|
480 |
+
if steps % 3 == 0:
|
481 |
+
orders = [3, ] * (K - 2) + [2, 1]
|
482 |
+
elif steps % 3 == 1:
|
483 |
+
orders = [3, ] * (K - 1) + [1]
|
484 |
+
else:
|
485 |
+
orders = [3, ] * (K - 1) + [2]
|
486 |
+
elif order == 2:
|
487 |
+
if steps % 2 == 0:
|
488 |
+
K = steps // 2
|
489 |
+
orders = [2, ] * K
|
490 |
+
else:
|
491 |
+
K = steps // 2 + 1
|
492 |
+
orders = [2, ] * (K - 1) + [1]
|
493 |
+
elif order == 1:
|
494 |
+
K = 1
|
495 |
+
orders = [1, ] * steps
|
496 |
+
else:
|
497 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
498 |
+
if skip_type == 'logSNR':
|
499 |
+
# To reproduce the results in DPM-Solver paper
|
500 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
501 |
+
else:
|
502 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
503 |
+
torch.cumsum(torch.tensor([0, ] + orders), dim=0).to(device)]
|
504 |
+
return timesteps_outer, orders
|
505 |
+
|
506 |
+
def denoise_fn(self, x, s):
|
507 |
+
"""
|
508 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
509 |
+
"""
|
510 |
+
return self.data_prediction_fn(x, s)
|
511 |
+
|
512 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
513 |
+
"""
|
514 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
515 |
+
|
516 |
+
Args:
|
517 |
+
x: A pytorch tensor. The initial value at time `s`.
|
518 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
519 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
520 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
521 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
522 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
523 |
+
Returns:
|
524 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
525 |
+
"""
|
526 |
+
ns = self.noise_schedule
|
527 |
+
dims = x.dim()
|
528 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
529 |
+
h = lambda_t - lambda_s
|
530 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
531 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
532 |
+
alpha_t = torch.exp(log_alpha_t)
|
533 |
+
|
534 |
+
if self.predict_x0:
|
535 |
+
phi_1 = torch.expm1(-h)
|
536 |
+
if model_s is None:
|
537 |
+
model_s = self.model_fn(x, s)
|
538 |
+
x_t = (
|
539 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
540 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
541 |
+
)
|
542 |
+
if return_intermediate:
|
543 |
+
return x_t, {'model_s': model_s}
|
544 |
+
else:
|
545 |
+
return x_t
|
546 |
+
else:
|
547 |
+
phi_1 = torch.expm1(h)
|
548 |
+
if model_s is None:
|
549 |
+
model_s = self.model_fn(x, s)
|
550 |
+
x_t = (
|
551 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
552 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
553 |
+
)
|
554 |
+
if return_intermediate:
|
555 |
+
return x_t, {'model_s': model_s}
|
556 |
+
else:
|
557 |
+
return x_t
|
558 |
+
|
559 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
560 |
+
solver_type='dpm_solver'):
|
561 |
+
"""
|
562 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
563 |
+
|
564 |
+
Args:
|
565 |
+
x: A pytorch tensor. The initial value at time `s`.
|
566 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
567 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
568 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
569 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
570 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
571 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
572 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
573 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
574 |
+
Returns:
|
575 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
576 |
+
"""
|
577 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
578 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
579 |
+
if r1 is None:
|
580 |
+
r1 = 0.5
|
581 |
+
ns = self.noise_schedule
|
582 |
+
dims = x.dim()
|
583 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
584 |
+
h = lambda_t - lambda_s
|
585 |
+
lambda_s1 = lambda_s + r1 * h
|
586 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
587 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
588 |
+
s1), ns.marginal_log_mean_coeff(t)
|
589 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
590 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
591 |
+
|
592 |
+
if self.predict_x0:
|
593 |
+
phi_11 = torch.expm1(-r1 * h)
|
594 |
+
phi_1 = torch.expm1(-h)
|
595 |
+
|
596 |
+
if model_s is None:
|
597 |
+
model_s = self.model_fn(x, s)
|
598 |
+
x_s1 = (
|
599 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
600 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
601 |
+
)
|
602 |
+
model_s1 = self.model_fn(x_s1, s1)
|
603 |
+
if solver_type == 'dpm_solver':
|
604 |
+
x_t = (
|
605 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
606 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
607 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
608 |
+
)
|
609 |
+
elif solver_type == 'taylor':
|
610 |
+
x_t = (
|
611 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
612 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
613 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
614 |
+
model_s1 - model_s)
|
615 |
+
)
|
616 |
+
else:
|
617 |
+
phi_11 = torch.expm1(r1 * h)
|
618 |
+
phi_1 = torch.expm1(h)
|
619 |
+
|
620 |
+
if model_s is None:
|
621 |
+
model_s = self.model_fn(x, s)
|
622 |
+
x_s1 = (
|
623 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
624 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
625 |
+
)
|
626 |
+
model_s1 = self.model_fn(x_s1, s1)
|
627 |
+
if solver_type == 'dpm_solver':
|
628 |
+
x_t = (
|
629 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
630 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
631 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
632 |
+
)
|
633 |
+
elif solver_type == 'taylor':
|
634 |
+
x_t = (
|
635 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
636 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
637 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
638 |
+
)
|
639 |
+
if return_intermediate:
|
640 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
641 |
+
else:
|
642 |
+
return x_t
|
643 |
+
|
644 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
645 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
646 |
+
"""
|
647 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
648 |
+
|
649 |
+
Args:
|
650 |
+
x: A pytorch tensor. The initial value at time `s`.
|
651 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
652 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
653 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
654 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
655 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
656 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
657 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
658 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
659 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
660 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
661 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
662 |
+
Returns:
|
663 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
664 |
+
"""
|
665 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
666 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
667 |
+
if r1 is None:
|
668 |
+
r1 = 1. / 3.
|
669 |
+
if r2 is None:
|
670 |
+
r2 = 2. / 3.
|
671 |
+
ns = self.noise_schedule
|
672 |
+
dims = x.dim()
|
673 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
674 |
+
h = lambda_t - lambda_s
|
675 |
+
lambda_s1 = lambda_s + r1 * h
|
676 |
+
lambda_s2 = lambda_s + r2 * h
|
677 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
678 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
679 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
680 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
681 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
682 |
+
s2), ns.marginal_std(t)
|
683 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
684 |
+
|
685 |
+
if self.predict_x0:
|
686 |
+
phi_11 = torch.expm1(-r1 * h)
|
687 |
+
phi_12 = torch.expm1(-r2 * h)
|
688 |
+
phi_1 = torch.expm1(-h)
|
689 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
690 |
+
phi_2 = phi_1 / h + 1.
|
691 |
+
phi_3 = phi_2 / h - 0.5
|
692 |
+
|
693 |
+
if model_s is None:
|
694 |
+
model_s = self.model_fn(x, s)
|
695 |
+
if model_s1 is None:
|
696 |
+
x_s1 = (
|
697 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
698 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
699 |
+
)
|
700 |
+
model_s1 = self.model_fn(x_s1, s1)
|
701 |
+
x_s2 = (
|
702 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
703 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
704 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
705 |
+
)
|
706 |
+
model_s2 = self.model_fn(x_s2, s2)
|
707 |
+
if solver_type == 'dpm_solver':
|
708 |
+
x_t = (
|
709 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
710 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
711 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
712 |
+
)
|
713 |
+
elif solver_type == 'taylor':
|
714 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
715 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
716 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
717 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
718 |
+
x_t = (
|
719 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
720 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
721 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
722 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
723 |
+
)
|
724 |
+
else:
|
725 |
+
phi_11 = torch.expm1(r1 * h)
|
726 |
+
phi_12 = torch.expm1(r2 * h)
|
727 |
+
phi_1 = torch.expm1(h)
|
728 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
729 |
+
phi_2 = phi_1 / h - 1.
|
730 |
+
phi_3 = phi_2 / h - 0.5
|
731 |
+
|
732 |
+
if model_s is None:
|
733 |
+
model_s = self.model_fn(x, s)
|
734 |
+
if model_s1 is None:
|
735 |
+
x_s1 = (
|
736 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
737 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
738 |
+
)
|
739 |
+
model_s1 = self.model_fn(x_s1, s1)
|
740 |
+
x_s2 = (
|
741 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
742 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
743 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
744 |
+
)
|
745 |
+
model_s2 = self.model_fn(x_s2, s2)
|
746 |
+
if solver_type == 'dpm_solver':
|
747 |
+
x_t = (
|
748 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
749 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
750 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
751 |
+
)
|
752 |
+
elif solver_type == 'taylor':
|
753 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
754 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
755 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
756 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
757 |
+
x_t = (
|
758 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
759 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
760 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
761 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
762 |
+
)
|
763 |
+
|
764 |
+
if return_intermediate:
|
765 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
766 |
+
else:
|
767 |
+
return x_t
|
768 |
+
|
769 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
770 |
+
"""
|
771 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
772 |
+
|
773 |
+
Args:
|
774 |
+
x: A pytorch tensor. The initial value at time `s`.
|
775 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
776 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
777 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
778 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
779 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
780 |
+
Returns:
|
781 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
782 |
+
"""
|
783 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
784 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
785 |
+
ns = self.noise_schedule
|
786 |
+
dims = x.dim()
|
787 |
+
model_prev_1, model_prev_0 = model_prev_list
|
788 |
+
t_prev_1, t_prev_0 = t_prev_list
|
789 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
790 |
+
t_prev_0), ns.marginal_lambda(t)
|
791 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
792 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
793 |
+
alpha_t = torch.exp(log_alpha_t)
|
794 |
+
|
795 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
796 |
+
h = lambda_t - lambda_prev_0
|
797 |
+
r0 = h_0 / h
|
798 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
799 |
+
if self.predict_x0:
|
800 |
+
if solver_type == 'dpm_solver':
|
801 |
+
x_t = (
|
802 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
803 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
804 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
805 |
+
)
|
806 |
+
elif solver_type == 'taylor':
|
807 |
+
x_t = (
|
808 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
809 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
810 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
811 |
+
)
|
812 |
+
else:
|
813 |
+
if solver_type == 'dpm_solver':
|
814 |
+
x_t = (
|
815 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
816 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
817 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
818 |
+
)
|
819 |
+
elif solver_type == 'taylor':
|
820 |
+
x_t = (
|
821 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
822 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
823 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
824 |
+
)
|
825 |
+
return x_t
|
826 |
+
|
827 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
828 |
+
"""
|
829 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
830 |
+
|
831 |
+
Args:
|
832 |
+
x: A pytorch tensor. The initial value at time `s`.
|
833 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
834 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
835 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
836 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
837 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
838 |
+
Returns:
|
839 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
840 |
+
"""
|
841 |
+
ns = self.noise_schedule
|
842 |
+
dims = x.dim()
|
843 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
844 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
845 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
846 |
+
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
847 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
848 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
849 |
+
alpha_t = torch.exp(log_alpha_t)
|
850 |
+
|
851 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
852 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
853 |
+
h = lambda_t - lambda_prev_0
|
854 |
+
r0, r1 = h_0 / h, h_1 / h
|
855 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
856 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
857 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
858 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
859 |
+
if self.predict_x0:
|
860 |
+
x_t = (
|
861 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
862 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
863 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
864 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
x_t = (
|
868 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
869 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
870 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
871 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
872 |
+
)
|
873 |
+
return x_t
|
874 |
+
|
875 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
876 |
+
r2=None):
|
877 |
+
"""
|
878 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
879 |
+
|
880 |
+
Args:
|
881 |
+
x: A pytorch tensor. The initial value at time `s`.
|
882 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
883 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
884 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
885 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
886 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
887 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
888 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
889 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
890 |
+
Returns:
|
891 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
892 |
+
"""
|
893 |
+
if order == 1:
|
894 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
895 |
+
elif order == 2:
|
896 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
897 |
+
solver_type=solver_type, r1=r1)
|
898 |
+
elif order == 3:
|
899 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
900 |
+
solver_type=solver_type, r1=r1, r2=r2)
|
901 |
+
else:
|
902 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
903 |
+
|
904 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
905 |
+
"""
|
906 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
907 |
+
|
908 |
+
Args:
|
909 |
+
x: A pytorch tensor. The initial value at time `s`.
|
910 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
911 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
912 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
913 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
914 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
915 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
916 |
+
Returns:
|
917 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
918 |
+
"""
|
919 |
+
if order == 1:
|
920 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
921 |
+
elif order == 2:
|
922 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
923 |
+
elif order == 3:
|
924 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
925 |
+
else:
|
926 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
927 |
+
|
928 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
929 |
+
solver_type='dpm_solver'):
|
930 |
+
"""
|
931 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
932 |
+
|
933 |
+
Args:
|
934 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
935 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
936 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
937 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
938 |
+
h_init: A `float`. The initial step size (for logSNR).
|
939 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
940 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
941 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
942 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
943 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
944 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
945 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
946 |
+
Returns:
|
947 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
948 |
+
|
949 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
950 |
+
"""
|
951 |
+
ns = self.noise_schedule
|
952 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
953 |
+
lambda_s = ns.marginal_lambda(s)
|
954 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
955 |
+
h = h_init * torch.ones_like(s).to(x)
|
956 |
+
x_prev = x
|
957 |
+
nfe = 0
|
958 |
+
if order == 2:
|
959 |
+
r1 = 0.5
|
960 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
961 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
962 |
+
solver_type=solver_type,
|
963 |
+
**kwargs)
|
964 |
+
elif order == 3:
|
965 |
+
r1, r2 = 1. / 3., 2. / 3.
|
966 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
967 |
+
return_intermediate=True,
|
968 |
+
solver_type=solver_type)
|
969 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
970 |
+
solver_type=solver_type,
|
971 |
+
**kwargs)
|
972 |
+
else:
|
973 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
974 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
975 |
+
t = ns.inverse_lambda(lambda_s + h)
|
976 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
977 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
978 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
979 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
980 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
981 |
+
if torch.all(E <= 1.):
|
982 |
+
x = x_higher
|
983 |
+
s = t
|
984 |
+
x_prev = x_lower
|
985 |
+
lambda_s = ns.marginal_lambda(s)
|
986 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
987 |
+
nfe += order
|
988 |
+
print('adaptive solver nfe', nfe)
|
989 |
+
return x
|
990 |
+
|
991 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
992 |
+
method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
|
993 |
+
rtol=0.05,
|
994 |
+
):
|
995 |
+
"""
|
996 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
997 |
+
|
998 |
+
=====================================================
|
999 |
+
|
1000 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
1001 |
+
- 'singlestep':
|
1002 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
1003 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
1004 |
+
The total number of function evaluations (NFE) == `steps`.
|
1005 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1006 |
+
- If `order` == 1:
|
1007 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1008 |
+
- If `order` == 2:
|
1009 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
1010 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
1011 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1012 |
+
- If `order` == 3:
|
1013 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
1014 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1015 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
1016 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
1017 |
+
- 'multistep':
|
1018 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
1019 |
+
We initialize the first `order` values by lower order multistep solvers.
|
1020 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1021 |
+
Denote K = steps.
|
1022 |
+
- If `order` == 1:
|
1023 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1024 |
+
- If `order` == 2:
|
1025 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
1026 |
+
- If `order` == 3:
|
1027 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
1028 |
+
- 'singlestep_fixed':
|
1029 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
1030 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
1031 |
+
- 'adaptive':
|
1032 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
1033 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
1034 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
1035 |
+
(NFE) and the sample quality.
|
1036 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
1037 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
1038 |
+
|
1039 |
+
=====================================================
|
1040 |
+
|
1041 |
+
Some advices for choosing the algorithm:
|
1042 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1043 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1044 |
+
e.g.
|
1045 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
1046 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1047 |
+
skip_type='time_uniform', method='singlestep')
|
1048 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1049 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
1050 |
+
e.g.
|
1051 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
1052 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1053 |
+
skip_type='time_uniform', method='multistep')
|
1054 |
+
|
1055 |
+
We support three types of `skip_type`:
|
1056 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1057 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1058 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1059 |
+
|
1060 |
+
=====================================================
|
1061 |
+
Args:
|
1062 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1063 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1064 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1065 |
+
t_start: A `float`. The starting time of the sampling.
|
1066 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1067 |
+
t_end: A `float`. The ending time of the sampling.
|
1068 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1069 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1070 |
+
For discrete-time DPMs:
|
1071 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1072 |
+
For continuous-time DPMs:
|
1073 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1074 |
+
order: A `int`. The order of DPM-Solver.
|
1075 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1076 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1077 |
+
denoise: A `bool`. Whether to denoise at the final step. Default is False.
|
1078 |
+
If `denoise` is True, the total NFE is (`steps` + 1).
|
1079 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1080 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1081 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1082 |
+
Returns:
|
1083 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1084 |
+
|
1085 |
+
"""
|
1086 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1087 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1088 |
+
device = x.device
|
1089 |
+
if method == 'adaptive':
|
1090 |
+
with torch.no_grad():
|
1091 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
1092 |
+
solver_type=solver_type)
|
1093 |
+
elif method == 'multistep':
|
1094 |
+
assert steps >= order
|
1095 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1096 |
+
assert timesteps.shape[0] - 1 == steps
|
1097 |
+
with torch.no_grad():
|
1098 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
1099 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
1100 |
+
t_prev_list = [vec_t]
|
1101 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1102 |
+
for init_order in range(1, order):
|
1103 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
1104 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
1105 |
+
solver_type=solver_type)
|
1106 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
1107 |
+
t_prev_list.append(vec_t)
|
1108 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1109 |
+
for step in range(order, steps + 1):
|
1110 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
1111 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, order,
|
1112 |
+
solver_type=solver_type)
|
1113 |
+
for i in range(order - 1):
|
1114 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1115 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1116 |
+
t_prev_list[-1] = vec_t
|
1117 |
+
# We do not need to evaluate the final model value.
|
1118 |
+
if step < steps:
|
1119 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1120 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1121 |
+
if method == 'singlestep':
|
1122 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
1123 |
+
skip_type=skip_type,
|
1124 |
+
t_T=t_T, t_0=t_0,
|
1125 |
+
device=device)
|
1126 |
+
elif method == 'singlestep_fixed':
|
1127 |
+
K = steps // order
|
1128 |
+
orders = [order, ] * K
|
1129 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1130 |
+
for i, order in enumerate(orders):
|
1131 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1132 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
1133 |
+
N=order, device=device)
|
1134 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1135 |
+
vec_s, vec_t = t_T_inner.repeat(x.shape[0]), t_0_inner.repeat(x.shape[0])
|
1136 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1137 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1138 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1139 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1140 |
+
if denoise:
|
1141 |
+
x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1142 |
+
return x
|
1143 |
+
|
1144 |
+
|
1145 |
+
#############################################################
|
1146 |
+
# other utility functions
|
1147 |
+
#############################################################
|
1148 |
+
|
1149 |
+
def interpolate_fn(x, xp, yp):
|
1150 |
+
"""
|
1151 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1152 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1153 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1154 |
+
|
1155 |
+
Args:
|
1156 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1157 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1158 |
+
yp: PyTorch tensor with shape [C, K].
|
1159 |
+
Returns:
|
1160 |
+
The function values f(x), with shape [N, C].
|
1161 |
+
"""
|
1162 |
+
N, K = x.shape[0], xp.shape[1]
|
1163 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1164 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1165 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1166 |
+
cand_start_idx = x_idx - 1
|
1167 |
+
start_idx = torch.where(
|
1168 |
+
torch.eq(x_idx, 0),
|
1169 |
+
torch.tensor(1, device=x.device),
|
1170 |
+
torch.where(
|
1171 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1172 |
+
),
|
1173 |
+
)
|
1174 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1175 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1176 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1177 |
+
start_idx2 = torch.where(
|
1178 |
+
torch.eq(x_idx, 0),
|
1179 |
+
torch.tensor(0, device=x.device),
|
1180 |
+
torch.where(
|
1181 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1182 |
+
),
|
1183 |
+
)
|
1184 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1185 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1186 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1187 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1188 |
+
return cand
|
1189 |
+
|
1190 |
+
|
1191 |
+
def expand_dims(v, dims):
|
1192 |
+
"""
|
1193 |
+
Expand the tensor `v` to the dim `dims`.
|
1194 |
+
|
1195 |
+
Args:
|
1196 |
+
`v`: a PyTorch tensor with shape [N].
|
1197 |
+
`dim`: a `int`.
|
1198 |
+
Returns:
|
1199 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1200 |
+
"""
|
1201 |
+
return v[(...,) + (None,) * (dims - 1)]
|
diffusion/how to export onnx.md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- Open [onnx_export](onnx_export.py)
|
2 |
+
- project_name = "dddsp" change "project_name" to your project name
|
3 |
+
- model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
|
4 |
+
- Run
|
diffusion/infer_gt_mel.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from diffusion.unit2mel import load_model_vocoder
|
5 |
+
|
6 |
+
|
7 |
+
class DiffGtMel:
|
8 |
+
def __init__(self, project_path=None, device=None):
|
9 |
+
self.project_path = project_path
|
10 |
+
if device is not None:
|
11 |
+
self.device = device
|
12 |
+
else:
|
13 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
self.model = None
|
15 |
+
self.vocoder = None
|
16 |
+
self.args = None
|
17 |
+
|
18 |
+
def flush_model(self, project_path, ddsp_config=None):
|
19 |
+
if (self.model is None) or (project_path != self.project_path):
|
20 |
+
model, vocoder, args = load_model_vocoder(project_path, device=self.device)
|
21 |
+
if self.check_args(ddsp_config, args):
|
22 |
+
self.model = model
|
23 |
+
self.vocoder = vocoder
|
24 |
+
self.args = args
|
25 |
+
|
26 |
+
def check_args(self, args1, args2):
|
27 |
+
if args1.data.block_size != args2.data.block_size:
|
28 |
+
raise ValueError("DDSP与DIFF模型的block_size不一致")
|
29 |
+
if args1.data.sampling_rate != args2.data.sampling_rate:
|
30 |
+
raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
|
31 |
+
if args1.data.encoder != args2.data.encoder:
|
32 |
+
raise ValueError("DDSP与DIFF模型的encoder不一致")
|
33 |
+
return True
|
34 |
+
|
35 |
+
def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
|
36 |
+
spk_mix_dict=None, start_frame=0):
|
37 |
+
input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
|
38 |
+
out_mel = self.model(
|
39 |
+
hubert,
|
40 |
+
f0,
|
41 |
+
volume,
|
42 |
+
spk_id=spk_id,
|
43 |
+
spk_mix_dict=spk_mix_dict,
|
44 |
+
gt_spec=input_mel,
|
45 |
+
infer=True,
|
46 |
+
infer_speedup=acc,
|
47 |
+
method=method,
|
48 |
+
k_step=k_step,
|
49 |
+
use_tqdm=False)
|
50 |
+
if start_frame > 0:
|
51 |
+
out_mel = out_mel[:, start_frame:, :]
|
52 |
+
f0 = f0[:, start_frame:, :]
|
53 |
+
output = self.vocoder.infer(out_mel, f0)
|
54 |
+
if start_frame > 0:
|
55 |
+
output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
|
56 |
+
return output
|
57 |
+
|
58 |
+
def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
|
59 |
+
use_silence=False, spk_mix_dict=None):
|
60 |
+
start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
|
61 |
+
if use_silence:
|
62 |
+
audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
|
63 |
+
f0 = f0[:, start_frame:, :]
|
64 |
+
hubert = hubert[:, start_frame:, :]
|
65 |
+
volume = volume[:, start_frame:, :]
|
66 |
+
_start_frame = 0
|
67 |
+
else:
|
68 |
+
_start_frame = start_frame
|
69 |
+
audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
|
70 |
+
method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
|
71 |
+
if use_silence:
|
72 |
+
if start_frame > 0:
|
73 |
+
audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
|
74 |
+
return audio
|
diffusion/logger/__init__.py
ADDED
File without changes
|
diffusion/logger/saver.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
author: wayn391@mastertones
|
3 |
+
'''
|
4 |
+
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import yaml
|
9 |
+
import datetime
|
10 |
+
import torch
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from . import utils
|
13 |
+
from torch.utils.tensorboard import SummaryWriter
|
14 |
+
|
15 |
+
class Saver(object):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
args,
|
19 |
+
initial_global_step=-1):
|
20 |
+
|
21 |
+
self.expdir = args.env.expdir
|
22 |
+
self.sample_rate = args.data.sampling_rate
|
23 |
+
|
24 |
+
# cold start
|
25 |
+
self.global_step = initial_global_step
|
26 |
+
self.init_time = time.time()
|
27 |
+
self.last_time = time.time()
|
28 |
+
|
29 |
+
# makedirs
|
30 |
+
os.makedirs(self.expdir, exist_ok=True)
|
31 |
+
|
32 |
+
# path
|
33 |
+
self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
|
34 |
+
|
35 |
+
# ckpt
|
36 |
+
os.makedirs(self.expdir, exist_ok=True)
|
37 |
+
|
38 |
+
# writer
|
39 |
+
self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
|
40 |
+
|
41 |
+
# save config
|
42 |
+
path_config = os.path.join(self.expdir, 'config.yaml')
|
43 |
+
with open(path_config, "w") as out_config:
|
44 |
+
yaml.dump(dict(args), out_config)
|
45 |
+
|
46 |
+
|
47 |
+
def log_info(self, msg):
|
48 |
+
'''log method'''
|
49 |
+
if isinstance(msg, dict):
|
50 |
+
msg_list = []
|
51 |
+
for k, v in msg.items():
|
52 |
+
tmp_str = ''
|
53 |
+
if isinstance(v, int):
|
54 |
+
tmp_str = '{}: {:,}'.format(k, v)
|
55 |
+
else:
|
56 |
+
tmp_str = '{}: {}'.format(k, v)
|
57 |
+
|
58 |
+
msg_list.append(tmp_str)
|
59 |
+
msg_str = '\n'.join(msg_list)
|
60 |
+
else:
|
61 |
+
msg_str = msg
|
62 |
+
|
63 |
+
# dsplay
|
64 |
+
print(msg_str)
|
65 |
+
|
66 |
+
# save
|
67 |
+
with open(self.path_log_info, 'a') as fp:
|
68 |
+
fp.write(msg_str+'\n')
|
69 |
+
|
70 |
+
def log_value(self, dict):
|
71 |
+
for k, v in dict.items():
|
72 |
+
self.writer.add_scalar(k, v, self.global_step)
|
73 |
+
|
74 |
+
def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
|
75 |
+
spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
|
76 |
+
spec = spec_cat[0]
|
77 |
+
if isinstance(spec, torch.Tensor):
|
78 |
+
spec = spec.cpu().numpy()
|
79 |
+
fig = plt.figure(figsize=(12, 9))
|
80 |
+
plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
|
81 |
+
plt.tight_layout()
|
82 |
+
self.writer.add_figure(name, fig, self.global_step)
|
83 |
+
|
84 |
+
def log_audio(self, dict):
|
85 |
+
for k, v in dict.items():
|
86 |
+
self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
|
87 |
+
|
88 |
+
def get_interval_time(self, update=True):
|
89 |
+
cur_time = time.time()
|
90 |
+
time_interval = cur_time - self.last_time
|
91 |
+
if update:
|
92 |
+
self.last_time = cur_time
|
93 |
+
return time_interval
|
94 |
+
|
95 |
+
def get_total_time(self, to_str=True):
|
96 |
+
total_time = time.time() - self.init_time
|
97 |
+
if to_str:
|
98 |
+
total_time = str(datetime.timedelta(
|
99 |
+
seconds=total_time))[:-5]
|
100 |
+
return total_time
|
101 |
+
|
102 |
+
def save_model(
|
103 |
+
self,
|
104 |
+
model,
|
105 |
+
optimizer,
|
106 |
+
name='model',
|
107 |
+
postfix='',
|
108 |
+
to_json=False):
|
109 |
+
# path
|
110 |
+
if postfix:
|
111 |
+
postfix = '_' + postfix
|
112 |
+
path_pt = os.path.join(
|
113 |
+
self.expdir , name+postfix+'.pt')
|
114 |
+
|
115 |
+
# check
|
116 |
+
print(' [*] model checkpoint saved: {}'.format(path_pt))
|
117 |
+
|
118 |
+
# save
|
119 |
+
if optimizer is not None:
|
120 |
+
torch.save({
|
121 |
+
'global_step': self.global_step,
|
122 |
+
'model': model.state_dict(),
|
123 |
+
'optimizer': optimizer.state_dict()}, path_pt)
|
124 |
+
else:
|
125 |
+
torch.save({
|
126 |
+
'global_step': self.global_step,
|
127 |
+
'model': model.state_dict()}, path_pt)
|
128 |
+
|
129 |
+
# to json
|
130 |
+
if to_json:
|
131 |
+
path_json = os.path.join(
|
132 |
+
self.expdir , name+'.json')
|
133 |
+
utils.to_json(path_params, path_json)
|
134 |
+
|
135 |
+
def delete_model(self, name='model', postfix=''):
|
136 |
+
# path
|
137 |
+
if postfix:
|
138 |
+
postfix = '_' + postfix
|
139 |
+
path_pt = os.path.join(
|
140 |
+
self.expdir , name+postfix+'.pt')
|
141 |
+
|
142 |
+
# delete
|
143 |
+
if os.path.exists(path_pt):
|
144 |
+
os.remove(path_pt)
|
145 |
+
print(' [*] model checkpoint deleted: {}'.format(path_pt))
|
146 |
+
|
147 |
+
def global_step_increment(self):
|
148 |
+
self.global_step += 1
|
149 |
+
|
150 |
+
|
diffusion/logger/utils.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import json
|
4 |
+
import pickle
|
5 |
+
import torch
|
6 |
+
|
7 |
+
def traverse_dir(
|
8 |
+
root_dir,
|
9 |
+
extensions,
|
10 |
+
amount=None,
|
11 |
+
str_include=None,
|
12 |
+
str_exclude=None,
|
13 |
+
is_pure=False,
|
14 |
+
is_sort=False,
|
15 |
+
is_ext=True):
|
16 |
+
|
17 |
+
file_list = []
|
18 |
+
cnt = 0
|
19 |
+
for root, _, files in os.walk(root_dir):
|
20 |
+
for file in files:
|
21 |
+
if any([file.endswith(f".{ext}") for ext in extensions]):
|
22 |
+
# path
|
23 |
+
mix_path = os.path.join(root, file)
|
24 |
+
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
|
25 |
+
|
26 |
+
# amount
|
27 |
+
if (amount is not None) and (cnt == amount):
|
28 |
+
if is_sort:
|
29 |
+
file_list.sort()
|
30 |
+
return file_list
|
31 |
+
|
32 |
+
# check string
|
33 |
+
if (str_include is not None) and (str_include not in pure_path):
|
34 |
+
continue
|
35 |
+
if (str_exclude is not None) and (str_exclude in pure_path):
|
36 |
+
continue
|
37 |
+
|
38 |
+
if not is_ext:
|
39 |
+
ext = pure_path.split('.')[-1]
|
40 |
+
pure_path = pure_path[:-(len(ext)+1)]
|
41 |
+
file_list.append(pure_path)
|
42 |
+
cnt += 1
|
43 |
+
if is_sort:
|
44 |
+
file_list.sort()
|
45 |
+
return file_list
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
class DotDict(dict):
|
50 |
+
def __getattr__(*args):
|
51 |
+
val = dict.get(*args)
|
52 |
+
return DotDict(val) if type(val) is dict else val
|
53 |
+
|
54 |
+
__setattr__ = dict.__setitem__
|
55 |
+
__delattr__ = dict.__delitem__
|
56 |
+
|
57 |
+
|
58 |
+
def get_network_paras_amount(model_dict):
|
59 |
+
info = dict()
|
60 |
+
for model_name, model in model_dict.items():
|
61 |
+
# all_params = sum(p.numel() for p in model.parameters())
|
62 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
63 |
+
|
64 |
+
info[model_name] = trainable_params
|
65 |
+
return info
|
66 |
+
|
67 |
+
|
68 |
+
def load_config(path_config):
|
69 |
+
with open(path_config, "r") as config:
|
70 |
+
args = yaml.safe_load(config)
|
71 |
+
args = DotDict(args)
|
72 |
+
# print(args)
|
73 |
+
return args
|
74 |
+
|
75 |
+
def save_config(path_config,config):
|
76 |
+
config = dict(config)
|
77 |
+
with open(path_config, "w") as f:
|
78 |
+
yaml.dump(config, f)
|
79 |
+
|
80 |
+
def to_json(path_params, path_json):
|
81 |
+
params = torch.load(path_params, map_location=torch.device('cpu'))
|
82 |
+
raw_state_dict = {}
|
83 |
+
for k, v in params.items():
|
84 |
+
val = v.flatten().numpy().tolist()
|
85 |
+
raw_state_dict[k] = val
|
86 |
+
|
87 |
+
with open(path_json, 'w') as outfile:
|
88 |
+
json.dump(raw_state_dict, outfile,indent= "\t")
|
89 |
+
|
90 |
+
|
91 |
+
def convert_tensor_to_numpy(tensor, is_squeeze=True):
|
92 |
+
if is_squeeze:
|
93 |
+
tensor = tensor.squeeze()
|
94 |
+
if tensor.requires_grad:
|
95 |
+
tensor = tensor.detach()
|
96 |
+
if tensor.is_cuda:
|
97 |
+
tensor = tensor.cpu()
|
98 |
+
return tensor.numpy()
|
99 |
+
|
100 |
+
|
101 |
+
def load_model(
|
102 |
+
expdir,
|
103 |
+
model,
|
104 |
+
optimizer,
|
105 |
+
name='model',
|
106 |
+
postfix='',
|
107 |
+
device='cpu'):
|
108 |
+
if postfix == '':
|
109 |
+
postfix = '_' + postfix
|
110 |
+
path = os.path.join(expdir, name+postfix)
|
111 |
+
path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
|
112 |
+
global_step = 0
|
113 |
+
if len(path_pt) > 0:
|
114 |
+
steps = [s[len(path):] for s in path_pt]
|
115 |
+
maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
|
116 |
+
if maxstep >= 0:
|
117 |
+
path_pt = path+str(maxstep)+'.pt'
|
118 |
+
else:
|
119 |
+
path_pt = path+'best.pt'
|
120 |
+
print(' [*] restoring model from', path_pt)
|
121 |
+
ckpt = torch.load(path_pt, map_location=torch.device(device))
|
122 |
+
global_step = ckpt['global_step']
|
123 |
+
model.load_state_dict(ckpt['model'], strict=False)
|
124 |
+
if ckpt.get('optimizer') != None:
|
125 |
+
optimizer.load_state_dict(ckpt['optimizer'])
|
126 |
+
return global_step, model, optimizer
|
diffusion/onnx_export.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusion_onnx import GaussianDiffusion
|
2 |
+
import os
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
from wavenet import WaveNet
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import diffusion
|
10 |
+
|
11 |
+
class DotDict(dict):
|
12 |
+
def __getattr__(*args):
|
13 |
+
val = dict.get(*args)
|
14 |
+
return DotDict(val) if type(val) is dict else val
|
15 |
+
|
16 |
+
__setattr__ = dict.__setitem__
|
17 |
+
__delattr__ = dict.__delitem__
|
18 |
+
|
19 |
+
|
20 |
+
def load_model_vocoder(
|
21 |
+
model_path,
|
22 |
+
device='cpu'):
|
23 |
+
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
|
24 |
+
with open(config_file, "r") as config:
|
25 |
+
args = yaml.safe_load(config)
|
26 |
+
args = DotDict(args)
|
27 |
+
|
28 |
+
# load model
|
29 |
+
model = Unit2Mel(
|
30 |
+
args.data.encoder_out_channels,
|
31 |
+
args.model.n_spk,
|
32 |
+
args.model.use_pitch_aug,
|
33 |
+
128,
|
34 |
+
args.model.n_layers,
|
35 |
+
args.model.n_chans,
|
36 |
+
args.model.n_hidden)
|
37 |
+
|
38 |
+
print(' [Loading] ' + model_path)
|
39 |
+
ckpt = torch.load(model_path, map_location=torch.device(device))
|
40 |
+
model.to(device)
|
41 |
+
model.load_state_dict(ckpt['model'])
|
42 |
+
model.eval()
|
43 |
+
return model, args
|
44 |
+
|
45 |
+
|
46 |
+
class Unit2Mel(nn.Module):
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
input_channel,
|
50 |
+
n_spk,
|
51 |
+
use_pitch_aug=False,
|
52 |
+
out_dims=128,
|
53 |
+
n_layers=20,
|
54 |
+
n_chans=384,
|
55 |
+
n_hidden=256):
|
56 |
+
super().__init__()
|
57 |
+
self.unit_embed = nn.Linear(input_channel, n_hidden)
|
58 |
+
self.f0_embed = nn.Linear(1, n_hidden)
|
59 |
+
self.volume_embed = nn.Linear(1, n_hidden)
|
60 |
+
if use_pitch_aug:
|
61 |
+
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
|
62 |
+
else:
|
63 |
+
self.aug_shift_embed = None
|
64 |
+
self.n_spk = n_spk
|
65 |
+
if n_spk is not None and n_spk > 1:
|
66 |
+
self.spk_embed = nn.Embedding(n_spk, n_hidden)
|
67 |
+
|
68 |
+
# diffusion
|
69 |
+
self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
|
70 |
+
self.hidden_size = n_hidden
|
71 |
+
self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def forward(self, units, mel2ph, f0, volume, g = None):
|
76 |
+
|
77 |
+
'''
|
78 |
+
input:
|
79 |
+
B x n_frames x n_unit
|
80 |
+
return:
|
81 |
+
dict of B x n_frames x feat
|
82 |
+
'''
|
83 |
+
|
84 |
+
decoder_inp = F.pad(units, [0, 0, 1, 0])
|
85 |
+
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
|
86 |
+
units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
|
87 |
+
|
88 |
+
x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
|
89 |
+
|
90 |
+
if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
|
91 |
+
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
92 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
93 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
94 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
95 |
+
x = x.transpose(1, 2) + g
|
96 |
+
return x
|
97 |
+
else:
|
98 |
+
return x.transpose(1, 2)
|
99 |
+
|
100 |
+
|
101 |
+
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
|
102 |
+
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
|
103 |
+
|
104 |
+
'''
|
105 |
+
input:
|
106 |
+
B x n_frames x n_unit
|
107 |
+
return:
|
108 |
+
dict of B x n_frames x feat
|
109 |
+
'''
|
110 |
+
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
|
111 |
+
if self.n_spk is not None and self.n_spk > 1:
|
112 |
+
if spk_mix_dict is not None:
|
113 |
+
spk_embed_mix = torch.zeros((1,1,self.hidden_size))
|
114 |
+
for k, v in spk_mix_dict.items():
|
115 |
+
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
|
116 |
+
spk_embeddd = self.spk_embed(spk_id_torch)
|
117 |
+
self.speaker_map[k] = spk_embeddd
|
118 |
+
spk_embed_mix = spk_embed_mix + v * spk_embeddd
|
119 |
+
x = x + spk_embed_mix
|
120 |
+
else:
|
121 |
+
x = x + self.spk_embed(spk_id - 1)
|
122 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
123 |
+
self.speaker_map = self.speaker_map.detach()
|
124 |
+
return x.transpose(1, 2)
|
125 |
+
|
126 |
+
def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
|
127 |
+
hubert_hidden_size = 768
|
128 |
+
n_frames = 100
|
129 |
+
hubert = torch.randn((1, n_frames, hubert_hidden_size))
|
130 |
+
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
|
131 |
+
f0 = torch.randn((1, n_frames))
|
132 |
+
volume = torch.randn((1, n_frames))
|
133 |
+
spk_mix = []
|
134 |
+
spks = {}
|
135 |
+
if self.n_spk is not None and self.n_spk > 1:
|
136 |
+
for i in range(self.n_spk):
|
137 |
+
spk_mix.append(1.0/float(self.n_spk))
|
138 |
+
spks.update({i:1.0/float(self.n_spk)})
|
139 |
+
spk_mix = torch.tensor(spk_mix)
|
140 |
+
spk_mix = spk_mix.repeat(n_frames, 1)
|
141 |
+
orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
|
142 |
+
outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
|
143 |
+
if export_encoder:
|
144 |
+
torch.onnx.export(
|
145 |
+
self,
|
146 |
+
(hubert, mel2ph, f0, volume, spk_mix),
|
147 |
+
f"{project_name}_encoder.onnx",
|
148 |
+
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
|
149 |
+
output_names=["mel_pred"],
|
150 |
+
dynamic_axes={
|
151 |
+
"hubert": [1],
|
152 |
+
"f0": [1],
|
153 |
+
"volume": [1],
|
154 |
+
"mel2ph": [1],
|
155 |
+
"spk_mix": [0],
|
156 |
+
},
|
157 |
+
opset_version=16
|
158 |
+
)
|
159 |
+
|
160 |
+
self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
|
161 |
+
|
162 |
+
def ExportOnnx(self, project_name=None):
|
163 |
+
hubert_hidden_size = 768
|
164 |
+
n_frames = 100
|
165 |
+
hubert = torch.randn((1, n_frames, hubert_hidden_size))
|
166 |
+
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
|
167 |
+
f0 = torch.randn((1, n_frames))
|
168 |
+
volume = torch.randn((1, n_frames))
|
169 |
+
spk_mix = []
|
170 |
+
spks = {}
|
171 |
+
if self.n_spk is not None and self.n_spk > 1:
|
172 |
+
for i in range(self.n_spk):
|
173 |
+
spk_mix.append(1.0/float(self.n_spk))
|
174 |
+
spks.update({i:1.0/float(self.n_spk)})
|
175 |
+
spk_mix = torch.tensor(spk_mix)
|
176 |
+
orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
|
177 |
+
outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
|
178 |
+
|
179 |
+
torch.onnx.export(
|
180 |
+
self,
|
181 |
+
(hubert, mel2ph, f0, volume, spk_mix),
|
182 |
+
f"{project_name}_encoder.onnx",
|
183 |
+
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
|
184 |
+
output_names=["mel_pred"],
|
185 |
+
dynamic_axes={
|
186 |
+
"hubert": [1],
|
187 |
+
"f0": [1],
|
188 |
+
"volume": [1],
|
189 |
+
"mel2ph": [1]
|
190 |
+
},
|
191 |
+
opset_version=16
|
192 |
+
)
|
193 |
+
|
194 |
+
condition = torch.randn(1,self.decoder.n_hidden,n_frames)
|
195 |
+
noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
|
196 |
+
pndm_speedup = torch.LongTensor([100])
|
197 |
+
K_steps = torch.LongTensor([1000])
|
198 |
+
self.decoder = torch.jit.script(self.decoder)
|
199 |
+
self.decoder(condition, noise, pndm_speedup, K_steps)
|
200 |
+
|
201 |
+
torch.onnx.export(
|
202 |
+
self.decoder,
|
203 |
+
(condition, noise, pndm_speedup, K_steps),
|
204 |
+
f"{project_name}_diffusion.onnx",
|
205 |
+
input_names=["condition", "noise", "pndm_speedup", "K_steps"],
|
206 |
+
output_names=["mel"],
|
207 |
+
dynamic_axes={
|
208 |
+
"condition": [2],
|
209 |
+
"noise": [3],
|
210 |
+
},
|
211 |
+
opset_version=16
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
if __name__ == "__main__":
|
216 |
+
project_name = "dddsp"
|
217 |
+
model_path = f'{project_name}/model_500000.pt'
|
218 |
+
|
219 |
+
model, _ = load_model_vocoder(model_path)
|
220 |
+
|
221 |
+
# 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
|
222 |
+
model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
|
223 |
+
|
224 |
+
# 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
|
225 |
+
# model.ExportOnnx(project_name)
|
226 |
+
|
diffusion/solver.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
from diffusion.logger.saver import Saver
|
7 |
+
from diffusion.logger import utils
|
8 |
+
from torch import autocast
|
9 |
+
from torch.cuda.amp import GradScaler
|
10 |
+
|
11 |
+
def test(args, model, vocoder, loader_test, saver):
|
12 |
+
print(' [*] testing...')
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
# losses
|
16 |
+
test_loss = 0.
|
17 |
+
|
18 |
+
# intialization
|
19 |
+
num_batches = len(loader_test)
|
20 |
+
rtf_all = []
|
21 |
+
|
22 |
+
# run
|
23 |
+
with torch.no_grad():
|
24 |
+
for bidx, data in enumerate(loader_test):
|
25 |
+
fn = data['name'][0].split("/")[-1]
|
26 |
+
speaker = data['name'][0].split("/")[-2]
|
27 |
+
print('--------')
|
28 |
+
print('{}/{} - {}'.format(bidx, num_batches, fn))
|
29 |
+
|
30 |
+
# unpack data
|
31 |
+
for k in data.keys():
|
32 |
+
if not k.startswith('name'):
|
33 |
+
data[k] = data[k].to(args.device)
|
34 |
+
print('>>', data['name'][0])
|
35 |
+
|
36 |
+
# forward
|
37 |
+
st_time = time.time()
|
38 |
+
mel = model(
|
39 |
+
data['units'],
|
40 |
+
data['f0'],
|
41 |
+
data['volume'],
|
42 |
+
data['spk_id'],
|
43 |
+
gt_spec=None,
|
44 |
+
infer=True,
|
45 |
+
infer_speedup=args.infer.speedup,
|
46 |
+
method=args.infer.method)
|
47 |
+
signal = vocoder.infer(mel, data['f0'])
|
48 |
+
ed_time = time.time()
|
49 |
+
|
50 |
+
# RTF
|
51 |
+
run_time = ed_time - st_time
|
52 |
+
song_time = signal.shape[-1] / args.data.sampling_rate
|
53 |
+
rtf = run_time / song_time
|
54 |
+
print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
|
55 |
+
rtf_all.append(rtf)
|
56 |
+
|
57 |
+
# loss
|
58 |
+
for i in range(args.train.batch_size):
|
59 |
+
loss = model(
|
60 |
+
data['units'],
|
61 |
+
data['f0'],
|
62 |
+
data['volume'],
|
63 |
+
data['spk_id'],
|
64 |
+
gt_spec=data['mel'],
|
65 |
+
infer=False)
|
66 |
+
test_loss += loss.item()
|
67 |
+
|
68 |
+
# log mel
|
69 |
+
saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
|
70 |
+
|
71 |
+
# log audi
|
72 |
+
path_audio = data['name_ext'][0]
|
73 |
+
audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
|
74 |
+
if len(audio.shape) > 1:
|
75 |
+
audio = librosa.to_mono(audio)
|
76 |
+
audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
|
77 |
+
saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
|
78 |
+
# report
|
79 |
+
test_loss /= args.train.batch_size
|
80 |
+
test_loss /= num_batches
|
81 |
+
|
82 |
+
# check
|
83 |
+
print(' [test_loss] test_loss:', test_loss)
|
84 |
+
print(' Real Time Factor', np.mean(rtf_all))
|
85 |
+
return test_loss
|
86 |
+
|
87 |
+
|
88 |
+
def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
|
89 |
+
# saver
|
90 |
+
saver = Saver(args, initial_global_step=initial_global_step)
|
91 |
+
|
92 |
+
# model size
|
93 |
+
params_count = utils.get_network_paras_amount({'model': model})
|
94 |
+
saver.log_info('--- model size ---')
|
95 |
+
saver.log_info(params_count)
|
96 |
+
|
97 |
+
# run
|
98 |
+
num_batches = len(loader_train)
|
99 |
+
model.train()
|
100 |
+
saver.log_info('======= start training =======')
|
101 |
+
scaler = GradScaler()
|
102 |
+
if args.train.amp_dtype == 'fp32':
|
103 |
+
dtype = torch.float32
|
104 |
+
elif args.train.amp_dtype == 'fp16':
|
105 |
+
dtype = torch.float16
|
106 |
+
elif args.train.amp_dtype == 'bf16':
|
107 |
+
dtype = torch.bfloat16
|
108 |
+
else:
|
109 |
+
raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
|
110 |
+
saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
|
111 |
+
for epoch in range(args.train.epochs):
|
112 |
+
for batch_idx, data in enumerate(loader_train):
|
113 |
+
saver.global_step_increment()
|
114 |
+
optimizer.zero_grad()
|
115 |
+
|
116 |
+
# unpack data
|
117 |
+
for k in data.keys():
|
118 |
+
if not k.startswith('name'):
|
119 |
+
data[k] = data[k].to(args.device)
|
120 |
+
|
121 |
+
# forward
|
122 |
+
if dtype == torch.float32:
|
123 |
+
loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
|
124 |
+
aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False)
|
125 |
+
else:
|
126 |
+
with autocast(device_type=args.device, dtype=dtype):
|
127 |
+
loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
|
128 |
+
aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False)
|
129 |
+
|
130 |
+
# handle nan loss
|
131 |
+
if torch.isnan(loss):
|
132 |
+
raise ValueError(' [x] nan loss ')
|
133 |
+
else:
|
134 |
+
# backpropagate
|
135 |
+
if dtype == torch.float32:
|
136 |
+
loss.backward()
|
137 |
+
optimizer.step()
|
138 |
+
else:
|
139 |
+
scaler.scale(loss).backward()
|
140 |
+
scaler.step(optimizer)
|
141 |
+
scaler.update()
|
142 |
+
scheduler.step()
|
143 |
+
|
144 |
+
# log loss
|
145 |
+
if saver.global_step % args.train.interval_log == 0:
|
146 |
+
current_lr = optimizer.param_groups[0]['lr']
|
147 |
+
saver.log_info(
|
148 |
+
'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
|
149 |
+
epoch,
|
150 |
+
batch_idx,
|
151 |
+
num_batches,
|
152 |
+
args.env.expdir,
|
153 |
+
args.train.interval_log/saver.get_interval_time(),
|
154 |
+
current_lr,
|
155 |
+
loss.item(),
|
156 |
+
saver.get_total_time(),
|
157 |
+
saver.global_step
|
158 |
+
)
|
159 |
+
)
|
160 |
+
|
161 |
+
saver.log_value({
|
162 |
+
'train/loss': loss.item()
|
163 |
+
})
|
164 |
+
|
165 |
+
saver.log_value({
|
166 |
+
'train/lr': current_lr
|
167 |
+
})
|
168 |
+
|
169 |
+
# validation
|
170 |
+
if saver.global_step % args.train.interval_val == 0:
|
171 |
+
optimizer_save = optimizer if args.train.save_opt else None
|
172 |
+
|
173 |
+
# save latest
|
174 |
+
saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
|
175 |
+
last_val_step = saver.global_step - args.train.interval_val
|
176 |
+
if last_val_step % args.train.interval_force_save != 0:
|
177 |
+
saver.delete_model(postfix=f'{last_val_step}')
|
178 |
+
|
179 |
+
# run testing set
|
180 |
+
test_loss = test(args, model, vocoder, loader_test, saver)
|
181 |
+
|
182 |
+
# log loss
|
183 |
+
saver.log_info(
|
184 |
+
' --- <validation> --- \nloss: {:.3f}. '.format(
|
185 |
+
test_loss,
|
186 |
+
)
|
187 |
+
)
|
188 |
+
|
189 |
+
saver.log_value({
|
190 |
+
'validation/loss': test_loss
|
191 |
+
})
|
192 |
+
|
193 |
+
model.train()
|
194 |
+
|
195 |
+
|
diffusion/unit2mel.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from .diffusion import GaussianDiffusion
|
7 |
+
from .wavenet import WaveNet
|
8 |
+
from .vocoder import Vocoder
|
9 |
+
|
10 |
+
class DotDict(dict):
|
11 |
+
def __getattr__(*args):
|
12 |
+
val = dict.get(*args)
|
13 |
+
return DotDict(val) if type(val) is dict else val
|
14 |
+
|
15 |
+
__setattr__ = dict.__setitem__
|
16 |
+
__delattr__ = dict.__delitem__
|
17 |
+
|
18 |
+
|
19 |
+
def load_model_vocoder(
|
20 |
+
model_path,
|
21 |
+
device='cpu',
|
22 |
+
config_path = None
|
23 |
+
):
|
24 |
+
if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
|
25 |
+
else: config_file = config_path
|
26 |
+
|
27 |
+
with open(config_file, "r") as config:
|
28 |
+
args = yaml.safe_load(config)
|
29 |
+
args = DotDict(args)
|
30 |
+
|
31 |
+
# load vocoder
|
32 |
+
vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
|
33 |
+
|
34 |
+
# load model
|
35 |
+
model = Unit2Mel(
|
36 |
+
args.data.encoder_out_channels,
|
37 |
+
args.model.n_spk,
|
38 |
+
args.model.use_pitch_aug,
|
39 |
+
vocoder.dimension,
|
40 |
+
args.model.n_layers,
|
41 |
+
args.model.n_chans,
|
42 |
+
args.model.n_hidden)
|
43 |
+
|
44 |
+
print(' [Loading] ' + model_path)
|
45 |
+
ckpt = torch.load(model_path, map_location=torch.device(device))
|
46 |
+
model.to(device)
|
47 |
+
model.load_state_dict(ckpt['model'])
|
48 |
+
model.eval()
|
49 |
+
return model, vocoder, args
|
50 |
+
|
51 |
+
|
52 |
+
class Unit2Mel(nn.Module):
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
input_channel,
|
56 |
+
n_spk,
|
57 |
+
use_pitch_aug=False,
|
58 |
+
out_dims=128,
|
59 |
+
n_layers=20,
|
60 |
+
n_chans=384,
|
61 |
+
n_hidden=256):
|
62 |
+
super().__init__()
|
63 |
+
self.unit_embed = nn.Linear(input_channel, n_hidden)
|
64 |
+
self.f0_embed = nn.Linear(1, n_hidden)
|
65 |
+
self.volume_embed = nn.Linear(1, n_hidden)
|
66 |
+
if use_pitch_aug:
|
67 |
+
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
|
68 |
+
else:
|
69 |
+
self.aug_shift_embed = None
|
70 |
+
self.n_spk = n_spk
|
71 |
+
if n_spk is not None and n_spk > 1:
|
72 |
+
self.spk_embed = nn.Embedding(n_spk, n_hidden)
|
73 |
+
|
74 |
+
# diffusion
|
75 |
+
self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims)
|
76 |
+
|
77 |
+
def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
|
78 |
+
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
|
79 |
+
|
80 |
+
'''
|
81 |
+
input:
|
82 |
+
B x n_frames x n_unit
|
83 |
+
return:
|
84 |
+
dict of B x n_frames x feat
|
85 |
+
'''
|
86 |
+
|
87 |
+
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
|
88 |
+
if self.n_spk is not None and self.n_spk > 1:
|
89 |
+
if spk_mix_dict is not None:
|
90 |
+
for k, v in spk_mix_dict.items():
|
91 |
+
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
|
92 |
+
x = x + v * self.spk_embed(spk_id_torch)
|
93 |
+
else:
|
94 |
+
x = x + self.spk_embed(spk_id)
|
95 |
+
if self.aug_shift_embed is not None and aug_shift is not None:
|
96 |
+
x = x + self.aug_shift_embed(aug_shift / 5)
|
97 |
+
x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
|
98 |
+
|
99 |
+
return x
|
100 |
+
|
diffusion/vocoder.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from vdecoder.nsf_hifigan.nvSTFT import STFT
|
3 |
+
from vdecoder.nsf_hifigan.models import load_model,load_config
|
4 |
+
from torchaudio.transforms import Resample
|
5 |
+
|
6 |
+
|
7 |
+
class Vocoder:
|
8 |
+
def __init__(self, vocoder_type, vocoder_ckpt, device = None):
|
9 |
+
if device is None:
|
10 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
self.device = device
|
12 |
+
|
13 |
+
if vocoder_type == 'nsf-hifigan':
|
14 |
+
self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
|
15 |
+
elif vocoder_type == 'nsf-hifigan-log10':
|
16 |
+
self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
|
17 |
+
else:
|
18 |
+
raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
|
19 |
+
|
20 |
+
self.resample_kernel = {}
|
21 |
+
self.vocoder_sample_rate = self.vocoder.sample_rate()
|
22 |
+
self.vocoder_hop_size = self.vocoder.hop_size()
|
23 |
+
self.dimension = self.vocoder.dimension()
|
24 |
+
|
25 |
+
def extract(self, audio, sample_rate, keyshift=0):
|
26 |
+
|
27 |
+
# resample
|
28 |
+
if sample_rate == self.vocoder_sample_rate:
|
29 |
+
audio_res = audio
|
30 |
+
else:
|
31 |
+
key_str = str(sample_rate)
|
32 |
+
if key_str not in self.resample_kernel:
|
33 |
+
self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
|
34 |
+
audio_res = self.resample_kernel[key_str](audio)
|
35 |
+
|
36 |
+
# extract
|
37 |
+
mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
|
38 |
+
return mel
|
39 |
+
|
40 |
+
def infer(self, mel, f0):
|
41 |
+
f0 = f0[:,:mel.size(1),0] # B, n_frames
|
42 |
+
audio = self.vocoder(mel, f0)
|
43 |
+
return audio
|
44 |
+
|
45 |
+
|
46 |
+
class NsfHifiGAN(torch.nn.Module):
|
47 |
+
def __init__(self, model_path, device=None):
|
48 |
+
super().__init__()
|
49 |
+
if device is None:
|
50 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
51 |
+
self.device = device
|
52 |
+
self.model_path = model_path
|
53 |
+
self.model = None
|
54 |
+
self.h = load_config(model_path)
|
55 |
+
self.stft = STFT(
|
56 |
+
self.h.sampling_rate,
|
57 |
+
self.h.num_mels,
|
58 |
+
self.h.n_fft,
|
59 |
+
self.h.win_size,
|
60 |
+
self.h.hop_size,
|
61 |
+
self.h.fmin,
|
62 |
+
self.h.fmax)
|
63 |
+
|
64 |
+
def sample_rate(self):
|
65 |
+
return self.h.sampling_rate
|
66 |
+
|
67 |
+
def hop_size(self):
|
68 |
+
return self.h.hop_size
|
69 |
+
|
70 |
+
def dimension(self):
|
71 |
+
return self.h.num_mels
|
72 |
+
|
73 |
+
def extract(self, audio, keyshift=0):
|
74 |
+
mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
|
75 |
+
return mel
|
76 |
+
|
77 |
+
def forward(self, mel, f0):
|
78 |
+
if self.model is None:
|
79 |
+
print('| Load HifiGAN: ', self.model_path)
|
80 |
+
self.model, self.h = load_model(self.model_path, device=self.device)
|
81 |
+
with torch.no_grad():
|
82 |
+
c = mel.transpose(1, 2)
|
83 |
+
audio = self.model(c, f0)
|
84 |
+
return audio
|
85 |
+
|
86 |
+
class NsfHifiGANLog10(NsfHifiGAN):
|
87 |
+
def forward(self, mel, f0):
|
88 |
+
if self.model is None:
|
89 |
+
print('| Load HifiGAN: ', self.model_path)
|
90 |
+
self.model, self.h = load_model(self.model_path, device=self.device)
|
91 |
+
with torch.no_grad():
|
92 |
+
c = 0.434294 * mel.transpose(1, 2)
|
93 |
+
audio = self.model(c, f0)
|
94 |
+
return audio
|
diffusion/wavenet.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from math import sqrt
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.nn import Mish
|
8 |
+
|
9 |
+
|
10 |
+
class Conv1d(torch.nn.Conv1d):
|
11 |
+
def __init__(self, *args, **kwargs):
|
12 |
+
super().__init__(*args, **kwargs)
|
13 |
+
nn.init.kaiming_normal_(self.weight)
|
14 |
+
|
15 |
+
|
16 |
+
class SinusoidalPosEmb(nn.Module):
|
17 |
+
def __init__(self, dim):
|
18 |
+
super().__init__()
|
19 |
+
self.dim = dim
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
device = x.device
|
23 |
+
half_dim = self.dim // 2
|
24 |
+
emb = math.log(10000) / (half_dim - 1)
|
25 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
26 |
+
emb = x[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
28 |
+
return emb
|
29 |
+
|
30 |
+
|
31 |
+
class ResidualBlock(nn.Module):
|
32 |
+
def __init__(self, encoder_hidden, residual_channels, dilation):
|
33 |
+
super().__init__()
|
34 |
+
self.residual_channels = residual_channels
|
35 |
+
self.dilated_conv = nn.Conv1d(
|
36 |
+
residual_channels,
|
37 |
+
2 * residual_channels,
|
38 |
+
kernel_size=3,
|
39 |
+
padding=dilation,
|
40 |
+
dilation=dilation
|
41 |
+
)
|
42 |
+
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
|
43 |
+
self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
44 |
+
self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
|
45 |
+
|
46 |
+
def forward(self, x, conditioner, diffusion_step):
|
47 |
+
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
48 |
+
conditioner = self.conditioner_projection(conditioner)
|
49 |
+
y = x + diffusion_step
|
50 |
+
|
51 |
+
y = self.dilated_conv(y) + conditioner
|
52 |
+
|
53 |
+
# Using torch.split instead of torch.chunk to avoid using onnx::Slice
|
54 |
+
gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
55 |
+
y = torch.sigmoid(gate) * torch.tanh(filter)
|
56 |
+
|
57 |
+
y = self.output_projection(y)
|
58 |
+
|
59 |
+
# Using torch.split instead of torch.chunk to avoid using onnx::Slice
|
60 |
+
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
61 |
+
return (x + residual) / math.sqrt(2.0), skip
|
62 |
+
|
63 |
+
|
64 |
+
class WaveNet(nn.Module):
|
65 |
+
def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
|
66 |
+
super().__init__()
|
67 |
+
self.input_projection = Conv1d(in_dims, n_chans, 1)
|
68 |
+
self.diffusion_embedding = SinusoidalPosEmb(n_chans)
|
69 |
+
self.mlp = nn.Sequential(
|
70 |
+
nn.Linear(n_chans, n_chans * 4),
|
71 |
+
Mish(),
|
72 |
+
nn.Linear(n_chans * 4, n_chans)
|
73 |
+
)
|
74 |
+
self.residual_layers = nn.ModuleList([
|
75 |
+
ResidualBlock(
|
76 |
+
encoder_hidden=n_hidden,
|
77 |
+
residual_channels=n_chans,
|
78 |
+
dilation=1
|
79 |
+
)
|
80 |
+
for i in range(n_layers)
|
81 |
+
])
|
82 |
+
self.skip_projection = Conv1d(n_chans, n_chans, 1)
|
83 |
+
self.output_projection = Conv1d(n_chans, in_dims, 1)
|
84 |
+
nn.init.zeros_(self.output_projection.weight)
|
85 |
+
|
86 |
+
def forward(self, spec, diffusion_step, cond):
|
87 |
+
"""
|
88 |
+
:param spec: [B, 1, M, T]
|
89 |
+
:param diffusion_step: [B, 1]
|
90 |
+
:param cond: [B, M, T]
|
91 |
+
:return:
|
92 |
+
"""
|
93 |
+
x = spec.squeeze(1)
|
94 |
+
x = self.input_projection(x) # [B, residual_channel, T]
|
95 |
+
|
96 |
+
x = F.relu(x)
|
97 |
+
diffusion_step = self.diffusion_embedding(diffusion_step)
|
98 |
+
diffusion_step = self.mlp(diffusion_step)
|
99 |
+
skip = []
|
100 |
+
for layer in self.residual_layers:
|
101 |
+
x, skip_connection = layer(x, cond, diffusion_step)
|
102 |
+
skip.append(skip_connection)
|
103 |
+
|
104 |
+
x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
|
105 |
+
x = self.skip_projection(x)
|
106 |
+
x = F.relu(x)
|
107 |
+
x = self.output_projection(x) # [B, mel_bins, T]
|
108 |
+
return x[:, None, :, :]
|
inference/__init__.py
ADDED
File without changes
|
inference/chunks_temp.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"info": "temp_dict"}
|
inference/infer_tool.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import io
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from pathlib import Path
|
8 |
+
from inference import slicer
|
9 |
+
import gc
|
10 |
+
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
# import onnxruntime
|
14 |
+
import soundfile
|
15 |
+
import torch
|
16 |
+
import torchaudio
|
17 |
+
|
18 |
+
import cluster
|
19 |
+
import utils
|
20 |
+
from models import SynthesizerTrn
|
21 |
+
|
22 |
+
from diffusion.unit2mel import load_model_vocoder
|
23 |
+
import yaml
|
24 |
+
|
25 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
26 |
+
|
27 |
+
|
28 |
+
def read_temp(file_name):
|
29 |
+
if not os.path.exists(file_name):
|
30 |
+
with open(file_name, "w") as f:
|
31 |
+
f.write(json.dumps({"info": "temp_dict"}))
|
32 |
+
return {}
|
33 |
+
else:
|
34 |
+
try:
|
35 |
+
with open(file_name, "r") as f:
|
36 |
+
data = f.read()
|
37 |
+
data_dict = json.loads(data)
|
38 |
+
if os.path.getsize(file_name) > 50 * 1024 * 1024:
|
39 |
+
f_name = file_name.replace("\\", "/").split("/")[-1]
|
40 |
+
print(f"clean {f_name}")
|
41 |
+
for wav_hash in list(data_dict.keys()):
|
42 |
+
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
|
43 |
+
del data_dict[wav_hash]
|
44 |
+
except Exception as e:
|
45 |
+
print(e)
|
46 |
+
print(f"{file_name} error,auto rebuild file")
|
47 |
+
data_dict = {"info": "temp_dict"}
|
48 |
+
return data_dict
|
49 |
+
|
50 |
+
|
51 |
+
def write_temp(file_name, data):
|
52 |
+
with open(file_name, "w") as f:
|
53 |
+
f.write(json.dumps(data))
|
54 |
+
|
55 |
+
|
56 |
+
def timeit(func):
|
57 |
+
def run(*args, **kwargs):
|
58 |
+
t = time.time()
|
59 |
+
res = func(*args, **kwargs)
|
60 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
61 |
+
return res
|
62 |
+
|
63 |
+
return run
|
64 |
+
|
65 |
+
|
66 |
+
def format_wav(audio_path):
|
67 |
+
if Path(audio_path).suffix == '.wav':
|
68 |
+
return
|
69 |
+
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
|
70 |
+
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
|
71 |
+
|
72 |
+
|
73 |
+
def get_end_file(dir_path, end):
|
74 |
+
file_lists = []
|
75 |
+
for root, dirs, files in os.walk(dir_path):
|
76 |
+
files = [f for f in files if f[0] != '.']
|
77 |
+
dirs[:] = [d for d in dirs if d[0] != '.']
|
78 |
+
for f_file in files:
|
79 |
+
if f_file.endswith(end):
|
80 |
+
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
|
81 |
+
return file_lists
|
82 |
+
|
83 |
+
|
84 |
+
def get_md5(content):
|
85 |
+
return hashlib.new("md5", content).hexdigest()
|
86 |
+
|
87 |
+
def fill_a_to_b(a, b):
|
88 |
+
if len(a) < len(b):
|
89 |
+
for _ in range(0, len(b) - len(a)):
|
90 |
+
a.append(a[0])
|
91 |
+
|
92 |
+
def mkdir(paths: list):
|
93 |
+
for path in paths:
|
94 |
+
if not os.path.exists(path):
|
95 |
+
os.mkdir(path)
|
96 |
+
|
97 |
+
def pad_array(arr, target_length):
|
98 |
+
current_length = arr.shape[0]
|
99 |
+
if current_length >= target_length:
|
100 |
+
return arr
|
101 |
+
else:
|
102 |
+
pad_width = target_length - current_length
|
103 |
+
pad_left = pad_width // 2
|
104 |
+
pad_right = pad_width - pad_left
|
105 |
+
padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
|
106 |
+
return padded_arr
|
107 |
+
|
108 |
+
def split_list_by_n(list_collection, n, pre=0):
|
109 |
+
for i in range(0, len(list_collection), n):
|
110 |
+
yield list_collection[i-pre if i-pre>=0 else i: i + n]
|
111 |
+
|
112 |
+
|
113 |
+
class F0FilterException(Exception):
|
114 |
+
pass
|
115 |
+
|
116 |
+
class Svc(object):
|
117 |
+
def __init__(self, net_g_path, config_path,
|
118 |
+
device=None,
|
119 |
+
cluster_model_path="logs/44k/kmeans_10000.pt",
|
120 |
+
nsf_hifigan_enhance = False,
|
121 |
+
diffusion_model_path="logs/44k/diffusion/model_0.pt",
|
122 |
+
diffusion_config_path="configs/diffusion.yaml",
|
123 |
+
shallow_diffusion = False,
|
124 |
+
only_diffusion = False,
|
125 |
+
):
|
126 |
+
self.net_g_path = net_g_path
|
127 |
+
self.only_diffusion = only_diffusion
|
128 |
+
self.shallow_diffusion = shallow_diffusion
|
129 |
+
if device is None:
|
130 |
+
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
131 |
+
# self.dev = torch.device("cpu")
|
132 |
+
else:
|
133 |
+
self.dev = torch.device(device)
|
134 |
+
self.net_g_ms = None
|
135 |
+
if not self.only_diffusion:
|
136 |
+
self.hps_ms = utils.get_hparams_from_file(config_path)
|
137 |
+
self.target_sample = self.hps_ms.data.sampling_rate
|
138 |
+
self.hop_size = self.hps_ms.data.hop_length
|
139 |
+
self.spk2id = self.hps_ms.spk
|
140 |
+
try:
|
141 |
+
self.speech_encoder = self.hps_ms.model.speech_encoder
|
142 |
+
except Exception as e:
|
143 |
+
self.speech_encoder = 'vec768l12'
|
144 |
+
|
145 |
+
self.nsf_hifigan_enhance = nsf_hifigan_enhance
|
146 |
+
if self.shallow_diffusion or self.only_diffusion:
|
147 |
+
if os.path.exists(diffusion_model_path) and os.path.exists(diffusion_model_path):
|
148 |
+
self.diffusion_model,self.vocoder,self.diffusion_args = load_model_vocoder(diffusion_model_path,self.dev,config_path=diffusion_config_path)
|
149 |
+
if self.only_diffusion:
|
150 |
+
self.target_sample = self.diffusion_args.data.sampling_rate
|
151 |
+
self.hop_size = self.diffusion_args.data.block_size
|
152 |
+
self.spk2id = self.diffusion_args.spk
|
153 |
+
self.speech_encoder = self.diffusion_args.data.encoder
|
154 |
+
else:
|
155 |
+
print("No diffusion model or config found. Shallow diffusion mode will False")
|
156 |
+
self.shallow_diffusion = self.only_diffusion = False
|
157 |
+
|
158 |
+
# load hubert and model
|
159 |
+
if not self.only_diffusion:
|
160 |
+
self.load_model()
|
161 |
+
self.hubert_model = utils.get_speech_encoder(self.speech_encoder,device=self.dev)
|
162 |
+
self.volume_extractor = utils.Volume_Extractor(self.hop_size)
|
163 |
+
else:
|
164 |
+
self.hubert_model = utils.get_speech_encoder(self.diffusion_args.data.encoder,device=self.dev)
|
165 |
+
self.volume_extractor = utils.Volume_Extractor(self.diffusion_args.data.block_size)
|
166 |
+
|
167 |
+
if os.path.exists(cluster_model_path):
|
168 |
+
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
|
169 |
+
if self.shallow_diffusion : self.nsf_hifigan_enhance = False
|
170 |
+
if self.nsf_hifigan_enhance:
|
171 |
+
from modules.enhancer import Enhancer
|
172 |
+
self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev)
|
173 |
+
|
174 |
+
def load_model(self):
|
175 |
+
# get model configuration
|
176 |
+
self.net_g_ms = SynthesizerTrn(
|
177 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
178 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
179 |
+
**self.hps_ms.model)
|
180 |
+
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
|
181 |
+
if "half" in self.net_g_path and torch.cuda.is_available():
|
182 |
+
_ = self.net_g_ms.half().eval().to(self.dev)
|
183 |
+
else:
|
184 |
+
_ = self.net_g_ms.eval().to(self.dev)
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter ,f0_predictor,cr_threshold=0.05):
|
189 |
+
|
190 |
+
f0_predictor_object = utils.get_f0_predictor(f0_predictor,hop_length=self.hop_size,sampling_rate=self.target_sample,device=self.dev,threshold=cr_threshold)
|
191 |
+
|
192 |
+
f0, uv = f0_predictor_object.compute_f0_uv(wav)
|
193 |
+
if f0_filter and sum(f0) == 0:
|
194 |
+
raise F0FilterException("No voice detected")
|
195 |
+
f0 = torch.FloatTensor(f0).to(self.dev)
|
196 |
+
uv = torch.FloatTensor(uv).to(self.dev)
|
197 |
+
|
198 |
+
f0 = f0 * 2 ** (tran / 12)
|
199 |
+
f0 = f0.unsqueeze(0)
|
200 |
+
uv = uv.unsqueeze(0)
|
201 |
+
|
202 |
+
wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
|
203 |
+
wav16k = torch.from_numpy(wav16k).to(self.dev)
|
204 |
+
c = self.hubert_model.encoder(wav16k)
|
205 |
+
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
206 |
+
|
207 |
+
if cluster_infer_ratio !=0:
|
208 |
+
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
|
209 |
+
cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
|
210 |
+
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
|
211 |
+
|
212 |
+
c = c.unsqueeze(0)
|
213 |
+
return c, f0, uv
|
214 |
+
|
215 |
+
def infer(self, speaker, tran, raw_path,
|
216 |
+
cluster_infer_ratio=0,
|
217 |
+
auto_predict_f0=False,
|
218 |
+
noice_scale=0.4,
|
219 |
+
f0_filter=False,
|
220 |
+
f0_predictor='pm',
|
221 |
+
enhancer_adaptive_key = 0,
|
222 |
+
cr_threshold = 0.05,
|
223 |
+
k_step = 100
|
224 |
+
):
|
225 |
+
|
226 |
+
speaker_id = self.spk2id.get(speaker)
|
227 |
+
if not speaker_id and type(speaker) is int:
|
228 |
+
if len(self.spk2id.__dict__) >= speaker:
|
229 |
+
speaker_id = speaker
|
230 |
+
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
|
231 |
+
wav, sr = librosa.load(raw_path, sr=self.target_sample)
|
232 |
+
c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter,f0_predictor,cr_threshold=cr_threshold)
|
233 |
+
if "half" in self.net_g_path and torch.cuda.is_available():
|
234 |
+
c = c.half()
|
235 |
+
with torch.no_grad():
|
236 |
+
start = time.time()
|
237 |
+
if not self.only_diffusion:
|
238 |
+
audio,f0 = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)
|
239 |
+
audio = audio[0,0].data.float()
|
240 |
+
if self.shallow_diffusion:
|
241 |
+
audio_mel = self.vocoder.extract(audio[None,:],self.target_sample)
|
242 |
+
else:
|
243 |
+
audio = torch.FloatTensor(wav).to(self.dev)
|
244 |
+
audio_mel = None
|
245 |
+
if self.only_diffusion or self.shallow_diffusion:
|
246 |
+
vol = self.volume_extractor.extract(audio[None,:])[None,:,None].to(self.dev)
|
247 |
+
f0 = f0[:,:,None]
|
248 |
+
c = c.transpose(-1,-2)
|
249 |
+
audio_mel = self.diffusion_model(
|
250 |
+
c,
|
251 |
+
f0,
|
252 |
+
vol,
|
253 |
+
spk_id = sid,
|
254 |
+
spk_mix_dict = None,
|
255 |
+
gt_spec=audio_mel,
|
256 |
+
infer=True,
|
257 |
+
infer_speedup=self.diffusion_args.infer.speedup,
|
258 |
+
method=self.diffusion_args.infer.method,
|
259 |
+
k_step=k_step)
|
260 |
+
audio = self.vocoder.infer(audio_mel, f0).squeeze()
|
261 |
+
if self.nsf_hifigan_enhance:
|
262 |
+
audio, _ = self.enhancer.enhance(
|
263 |
+
audio[None,:],
|
264 |
+
self.target_sample,
|
265 |
+
f0[:,:,None],
|
266 |
+
self.hps_ms.data.hop_length,
|
267 |
+
adaptive_key = enhancer_adaptive_key)
|
268 |
+
use_time = time.time() - start
|
269 |
+
print("vits use time:{}".format(use_time))
|
270 |
+
return audio, audio.shape[-1]
|
271 |
+
|
272 |
+
def clear_empty(self):
|
273 |
+
# clean up vram
|
274 |
+
torch.cuda.empty_cache()
|
275 |
+
|
276 |
+
def unload_model(self):
|
277 |
+
# unload model
|
278 |
+
self.net_g_ms = self.net_g_ms.to("cpu")
|
279 |
+
del self.net_g_ms
|
280 |
+
if hasattr(self,"enhancer"):
|
281 |
+
self.enhancer.enhancer = self.enhancer.enhancer.to("cpu")
|
282 |
+
del self.enhancer.enhancer
|
283 |
+
del self.enhancer
|
284 |
+
gc.collect()
|
285 |
+
|
286 |
+
def slice_inference(self,
|
287 |
+
raw_audio_path,
|
288 |
+
spk,
|
289 |
+
tran,
|
290 |
+
slice_db,
|
291 |
+
cluster_infer_ratio,
|
292 |
+
auto_predict_f0,
|
293 |
+
noice_scale,
|
294 |
+
pad_seconds=0.5,
|
295 |
+
clip_seconds=0,
|
296 |
+
lg_num=0,
|
297 |
+
lgr_num =0.75,
|
298 |
+
f0_predictor='pm',
|
299 |
+
enhancer_adaptive_key = 0,
|
300 |
+
cr_threshold = 0.05,
|
301 |
+
k_step = 100
|
302 |
+
):
|
303 |
+
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
304 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
305 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
306 |
+
per_size = int(clip_seconds*audio_sr)
|
307 |
+
lg_size = int(lg_num*audio_sr)
|
308 |
+
lg_size_r = int(lg_size*lgr_num)
|
309 |
+
lg_size_c_l = (lg_size-lg_size_r)//2
|
310 |
+
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
|
311 |
+
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
|
312 |
+
|
313 |
+
audio = []
|
314 |
+
for (slice_tag, data) in audio_data:
|
315 |
+
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
316 |
+
# padd
|
317 |
+
length = int(np.ceil(len(data) / audio_sr * self.target_sample))
|
318 |
+
if slice_tag:
|
319 |
+
print('jump empty segment')
|
320 |
+
_audio = np.zeros(length)
|
321 |
+
audio.extend(list(pad_array(_audio, length)))
|
322 |
+
continue
|
323 |
+
if per_size != 0:
|
324 |
+
datas = split_list_by_n(data, per_size,lg_size)
|
325 |
+
else:
|
326 |
+
datas = [data]
|
327 |
+
for k,dat in enumerate(datas):
|
328 |
+
per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
|
329 |
+
if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
|
330 |
+
# padd
|
331 |
+
pad_len = int(audio_sr * pad_seconds)
|
332 |
+
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
|
333 |
+
raw_path = io.BytesIO()
|
334 |
+
soundfile.write(raw_path, dat, audio_sr, format="wav")
|
335 |
+
raw_path.seek(0)
|
336 |
+
out_audio, out_sr = self.infer(spk, tran, raw_path,
|
337 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
338 |
+
auto_predict_f0=auto_predict_f0,
|
339 |
+
noice_scale=noice_scale,
|
340 |
+
f0_predictor = f0_predictor,
|
341 |
+
enhancer_adaptive_key = enhancer_adaptive_key,
|
342 |
+
cr_threshold = cr_threshold,
|
343 |
+
k_step = k_step
|
344 |
+
)
|
345 |
+
_audio = out_audio.cpu().numpy()
|
346 |
+
pad_len = int(self.target_sample * pad_seconds)
|
347 |
+
_audio = _audio[pad_len:-pad_len]
|
348 |
+
_audio = pad_array(_audio, per_length)
|
349 |
+
if lg_size!=0 and k!=0:
|
350 |
+
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
|
351 |
+
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size]
|
352 |
+
lg_pre = lg1*(1-lg)+lg2*lg
|
353 |
+
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
|
354 |
+
audio.extend(lg_pre)
|
355 |
+
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
|
356 |
+
audio.extend(list(_audio))
|
357 |
+
return np.array(audio)
|
358 |
+
|
359 |
+
class RealTimeVC:
|
360 |
+
def __init__(self):
|
361 |
+
self.last_chunk = None
|
362 |
+
self.last_o = None
|
363 |
+
self.chunk_len = 16000 # chunk length
|
364 |
+
self.pre_len = 3840 # cross fade length, multiples of 640
|
365 |
+
|
366 |
+
# Input and output are 1-dimensional numpy waveform arrays
|
367 |
+
|
368 |
+
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
|
369 |
+
cluster_infer_ratio=0,
|
370 |
+
auto_predict_f0=False,
|
371 |
+
noice_scale=0.4,
|
372 |
+
f0_filter=False):
|
373 |
+
|
374 |
+
import maad
|
375 |
+
audio, sr = torchaudio.load(input_wav_path)
|
376 |
+
audio = audio.cpu().numpy()[0]
|
377 |
+
temp_wav = io.BytesIO()
|
378 |
+
if self.last_chunk is None:
|
379 |
+
input_wav_path.seek(0)
|
380 |
+
|
381 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
|
382 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
383 |
+
auto_predict_f0=auto_predict_f0,
|
384 |
+
noice_scale=noice_scale,
|
385 |
+
f0_filter=f0_filter)
|
386 |
+
|
387 |
+
audio = audio.cpu().numpy()
|
388 |
+
self.last_chunk = audio[-self.pre_len:]
|
389 |
+
self.last_o = audio
|
390 |
+
return audio[-self.chunk_len:]
|
391 |
+
else:
|
392 |
+
audio = np.concatenate([self.last_chunk, audio])
|
393 |
+
soundfile.write(temp_wav, audio, sr, format="wav")
|
394 |
+
temp_wav.seek(0)
|
395 |
+
|
396 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
|
397 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
398 |
+
auto_predict_f0=auto_predict_f0,
|
399 |
+
noice_scale=noice_scale,
|
400 |
+
f0_filter=f0_filter)
|
401 |
+
|
402 |
+
audio = audio.cpu().numpy()
|
403 |
+
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
|
404 |
+
self.last_chunk = audio[-self.pre_len:]
|
405 |
+
self.last_o = audio
|
406 |
+
return ret[self.chunk_len:2 * self.chunk_len]
|
407 |
+
|
inference/infer_tool_grad.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from pathlib import Path
|
7 |
+
import io
|
8 |
+
import librosa
|
9 |
+
import maad
|
10 |
+
import numpy as np
|
11 |
+
from inference import slicer
|
12 |
+
import parselmouth
|
13 |
+
import soundfile
|
14 |
+
import torch
|
15 |
+
import torchaudio
|
16 |
+
|
17 |
+
# from hubert import hubert_model
|
18 |
+
import utils
|
19 |
+
from models import SynthesizerTrn
|
20 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
22 |
+
|
23 |
+
|
24 |
+
def resize2d_f0(x, target_len):
|
25 |
+
source = np.array(x)
|
26 |
+
source[source < 0.001] = np.nan
|
27 |
+
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
|
28 |
+
source)
|
29 |
+
res = np.nan_to_num(target)
|
30 |
+
return res
|
31 |
+
|
32 |
+
|
33 |
+
def get_f0(x, p_len, f0_up_key=0):
|
34 |
+
|
35 |
+
time_step = 160 / 16000 * 1000
|
36 |
+
f0_min = 50
|
37 |
+
f0_max = 1100
|
38 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
39 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
40 |
+
|
41 |
+
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
|
42 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
43 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
44 |
+
|
45 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
46 |
+
if(pad_size > 0 or p_len - len(f0) - pad_size > 0):
|
47 |
+
f0 = np.pad(
|
48 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant')
|
49 |
+
|
50 |
+
f0 *= pow(2, f0_up_key / 12)
|
51 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
52 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * \
|
53 |
+
254 / (f0_mel_max - f0_mel_min) + 1
|
54 |
+
f0_mel[f0_mel <= 1] = 1
|
55 |
+
f0_mel[f0_mel > 255] = 255
|
56 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
57 |
+
return f0_coarse, f0
|
58 |
+
|
59 |
+
|
60 |
+
def clean_pitch(input_pitch):
|
61 |
+
num_nan = np.sum(input_pitch == 1)
|
62 |
+
if num_nan / len(input_pitch) > 0.9:
|
63 |
+
input_pitch[input_pitch != 1] = 1
|
64 |
+
return input_pitch
|
65 |
+
|
66 |
+
|
67 |
+
def plt_pitch(input_pitch):
|
68 |
+
input_pitch = input_pitch.astype(float)
|
69 |
+
input_pitch[input_pitch == 1] = np.nan
|
70 |
+
return input_pitch
|
71 |
+
|
72 |
+
|
73 |
+
def f0_to_pitch(ff):
|
74 |
+
f0_pitch = 69 + 12 * np.log2(ff / 440)
|
75 |
+
return f0_pitch
|
76 |
+
|
77 |
+
|
78 |
+
def fill_a_to_b(a, b):
|
79 |
+
if len(a) < len(b):
|
80 |
+
for _ in range(0, len(b) - len(a)):
|
81 |
+
a.append(a[0])
|
82 |
+
|
83 |
+
|
84 |
+
def mkdir(paths: list):
|
85 |
+
for path in paths:
|
86 |
+
if not os.path.exists(path):
|
87 |
+
os.mkdir(path)
|
88 |
+
|
89 |
+
|
90 |
+
class VitsSvc(object):
|
91 |
+
def __init__(self):
|
92 |
+
self.device = torch.device(
|
93 |
+
"cuda" if torch.cuda.is_available() else "cpu")
|
94 |
+
self.SVCVITS = None
|
95 |
+
self.hps = None
|
96 |
+
self.speakers = None
|
97 |
+
self.hubert_soft = utils.get_hubert_model()
|
98 |
+
|
99 |
+
def set_device(self, device):
|
100 |
+
self.device = torch.device(device)
|
101 |
+
self.hubert_soft.to(self.device)
|
102 |
+
if self.SVCVITS != None:
|
103 |
+
self.SVCVITS.to(self.device)
|
104 |
+
|
105 |
+
def loadCheckpoint(self, path):
|
106 |
+
self.hps = utils.get_hparams_from_file(
|
107 |
+
f"checkpoints/{path}/config.json")
|
108 |
+
self.SVCVITS = SynthesizerTrn(
|
109 |
+
self.hps.data.filter_length // 2 + 1,
|
110 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
111 |
+
**self.hps.model)
|
112 |
+
_ = utils.load_checkpoint(
|
113 |
+
f"checkpoints/{path}/model.pth", self.SVCVITS, None)
|
114 |
+
_ = self.SVCVITS.eval().to(self.device)
|
115 |
+
self.speakers = self.hps.spk
|
116 |
+
|
117 |
+
def get_units(self, source, sr):
|
118 |
+
source = source.unsqueeze(0).to(self.device)
|
119 |
+
with torch.inference_mode():
|
120 |
+
units = self.hubert_soft.units(source)
|
121 |
+
return units
|
122 |
+
|
123 |
+
def get_unit_pitch(self, in_path, tran):
|
124 |
+
source, sr = torchaudio.load(in_path)
|
125 |
+
source = torchaudio.functional.resample(source, sr, 16000)
|
126 |
+
if len(source.shape) == 2 and source.shape[1] >= 2:
|
127 |
+
source = torch.mean(source, dim=0).unsqueeze(0)
|
128 |
+
soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
|
129 |
+
f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
|
130 |
+
return soft, f0
|
131 |
+
|
132 |
+
def infer(self, speaker_id, tran, raw_path):
|
133 |
+
speaker_id = self.speakers[speaker_id]
|
134 |
+
sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
|
135 |
+
soft, pitch = self.get_unit_pitch(raw_path, tran)
|
136 |
+
f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
|
137 |
+
stn_tst = torch.FloatTensor(soft)
|
138 |
+
with torch.no_grad():
|
139 |
+
x_tst = stn_tst.unsqueeze(0).to(self.device)
|
140 |
+
x_tst = torch.repeat_interleave(
|
141 |
+
x_tst, repeats=2, dim=1).transpose(1, 2)
|
142 |
+
audio, _ = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[
|
143 |
+
0, 0].data.float()
|
144 |
+
return audio, audio.shape[-1]
|
145 |
+
|
146 |
+
def inference(self, srcaudio, chara, tran, slice_db):
|
147 |
+
sampling_rate, audio = srcaudio
|
148 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
149 |
+
if len(audio.shape) > 1:
|
150 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
151 |
+
if sampling_rate != 16000:
|
152 |
+
audio = librosa.resample(
|
153 |
+
audio, orig_sr=sampling_rate, target_sr=16000)
|
154 |
+
soundfile.write("tmpwav.wav", audio, 16000, format="wav")
|
155 |
+
chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
|
156 |
+
audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
|
157 |
+
audio = []
|
158 |
+
for (slice_tag, data) in audio_data:
|
159 |
+
length = int(np.ceil(len(data) / audio_sr *
|
160 |
+
self.hps.data.sampling_rate))
|
161 |
+
raw_path = io.BytesIO()
|
162 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
163 |
+
raw_path.seek(0)
|
164 |
+
if slice_tag:
|
165 |
+
_audio = np.zeros(length)
|
166 |
+
else:
|
167 |
+
out_audio, out_sr = self.infer(chara, tran, raw_path)
|
168 |
+
_audio = out_audio.cpu().numpy()
|
169 |
+
audio.extend(list(_audio))
|
170 |
+
audio = (np.array(audio) * 32768.0).astype('int16')
|
171 |
+
return (self.hps.data.sampling_rate, audio)
|
inference/slicer.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
|
5 |
+
|
6 |
+
class Slicer:
|
7 |
+
def __init__(self,
|
8 |
+
sr: int,
|
9 |
+
threshold: float = -40.,
|
10 |
+
min_length: int = 5000,
|
11 |
+
min_interval: int = 300,
|
12 |
+
hop_size: int = 20,
|
13 |
+
max_sil_kept: int = 5000):
|
14 |
+
if not min_length >= min_interval >= hop_size:
|
15 |
+
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
|
16 |
+
if not max_sil_kept >= hop_size:
|
17 |
+
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
|
18 |
+
min_interval = sr * min_interval / 1000
|
19 |
+
self.threshold = 10 ** (threshold / 20.)
|
20 |
+
self.hop_size = round(sr * hop_size / 1000)
|
21 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
22 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
23 |
+
self.min_interval = round(min_interval / self.hop_size)
|
24 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
25 |
+
|
26 |
+
def _apply_slice(self, waveform, begin, end):
|
27 |
+
if len(waveform.shape) > 1:
|
28 |
+
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
|
29 |
+
else:
|
30 |
+
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
|
31 |
+
|
32 |
+
# @timeit
|
33 |
+
def slice(self, waveform):
|
34 |
+
if len(waveform.shape) > 1:
|
35 |
+
samples = librosa.to_mono(waveform)
|
36 |
+
else:
|
37 |
+
samples = waveform
|
38 |
+
if samples.shape[0] <= self.min_length:
|
39 |
+
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
|
40 |
+
rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
41 |
+
sil_tags = []
|
42 |
+
silence_start = None
|
43 |
+
clip_start = 0
|
44 |
+
for i, rms in enumerate(rms_list):
|
45 |
+
# Keep looping while frame is silent.
|
46 |
+
if rms < self.threshold:
|
47 |
+
# Record start of silent frames.
|
48 |
+
if silence_start is None:
|
49 |
+
silence_start = i
|
50 |
+
continue
|
51 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
52 |
+
if silence_start is None:
|
53 |
+
continue
|
54 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
55 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
56 |
+
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
57 |
+
if not is_leading_silence and not need_slice_middle:
|
58 |
+
silence_start = None
|
59 |
+
continue
|
60 |
+
# Need slicing. Record the range of silent frames to be removed.
|
61 |
+
if i - silence_start <= self.max_sil_kept:
|
62 |
+
pos = rms_list[silence_start: i + 1].argmin() + silence_start
|
63 |
+
if silence_start == 0:
|
64 |
+
sil_tags.append((0, pos))
|
65 |
+
else:
|
66 |
+
sil_tags.append((pos, pos))
|
67 |
+
clip_start = pos
|
68 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
69 |
+
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
|
70 |
+
pos += i - self.max_sil_kept
|
71 |
+
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
72 |
+
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
73 |
+
if silence_start == 0:
|
74 |
+
sil_tags.append((0, pos_r))
|
75 |
+
clip_start = pos_r
|
76 |
+
else:
|
77 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
78 |
+
clip_start = max(pos_r, pos)
|
79 |
+
else:
|
80 |
+
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
81 |
+
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
82 |
+
if silence_start == 0:
|
83 |
+
sil_tags.append((0, pos_r))
|
84 |
+
else:
|
85 |
+
sil_tags.append((pos_l, pos_r))
|
86 |
+
clip_start = pos_r
|
87 |
+
silence_start = None
|
88 |
+
# Deal with trailing silence.
|
89 |
+
total_frames = rms_list.shape[0]
|
90 |
+
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
91 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
92 |
+
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
|
93 |
+
sil_tags.append((pos, total_frames + 1))
|
94 |
+
# Apply and return slices.
|
95 |
+
if len(sil_tags) == 0:
|
96 |
+
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
|
97 |
+
else:
|
98 |
+
chunks = []
|
99 |
+
# 第一段静音并非从头开始,补上有声片段
|
100 |
+
if sil_tags[0][0]:
|
101 |
+
chunks.append(
|
102 |
+
{"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
|
103 |
+
for i in range(0, len(sil_tags)):
|
104 |
+
# 标识有声片段(跳过第一段)
|
105 |
+
if i:
|
106 |
+
chunks.append({"slice": False,
|
107 |
+
"split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
|
108 |
+
# 标识所有静音片段
|
109 |
+
chunks.append({"slice": True,
|
110 |
+
"split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
|
111 |
+
# 最后一段静音并非结尾,补上结尾片段
|
112 |
+
if sil_tags[-1][1] * self.hop_size < len(waveform):
|
113 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
|
114 |
+
chunk_dict = {}
|
115 |
+
for i in range(len(chunks)):
|
116 |
+
chunk_dict[str(i)] = chunks[i]
|
117 |
+
return chunk_dict
|
118 |
+
|
119 |
+
|
120 |
+
def cut(audio_path, db_thresh=-30, min_len=5000):
|
121 |
+
audio, sr = librosa.load(audio_path, sr=None)
|
122 |
+
slicer = Slicer(
|
123 |
+
sr=sr,
|
124 |
+
threshold=db_thresh,
|
125 |
+
min_length=min_len
|
126 |
+
)
|
127 |
+
chunks = slicer.slice(audio)
|
128 |
+
return chunks
|
129 |
+
|
130 |
+
|
131 |
+
def chunks2audio(audio_path, chunks):
|
132 |
+
chunks = dict(chunks)
|
133 |
+
audio, sr = torchaudio.load(audio_path)
|
134 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
135 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
136 |
+
audio = audio.cpu().numpy()[0]
|
137 |
+
result = []
|
138 |
+
for k, v in chunks.items():
|
139 |
+
tag = v["split_time"].split(",")
|
140 |
+
if tag[0] != tag[1]:
|
141 |
+
result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
|
142 |
+
return result, sr
|
models.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import modules.attentions as attentions
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
import utils
|
15 |
+
from modules.commons import init_weights, get_padding
|
16 |
+
from vdecoder.hifigan.models import Generator
|
17 |
+
from utils import f0_to_coarse
|
18 |
+
|
19 |
+
class ResidualCouplingBlock(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
channels,
|
22 |
+
hidden_channels,
|
23 |
+
kernel_size,
|
24 |
+
dilation_rate,
|
25 |
+
n_layers,
|
26 |
+
n_flows=4,
|
27 |
+
gin_channels=0):
|
28 |
+
super().__init__()
|
29 |
+
self.channels = channels
|
30 |
+
self.hidden_channels = hidden_channels
|
31 |
+
self.kernel_size = kernel_size
|
32 |
+
self.dilation_rate = dilation_rate
|
33 |
+
self.n_layers = n_layers
|
34 |
+
self.n_flows = n_flows
|
35 |
+
self.gin_channels = gin_channels
|
36 |
+
|
37 |
+
self.flows = nn.ModuleList()
|
38 |
+
for i in range(n_flows):
|
39 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
40 |
+
self.flows.append(modules.Flip())
|
41 |
+
|
42 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
43 |
+
if not reverse:
|
44 |
+
for flow in self.flows:
|
45 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
46 |
+
else:
|
47 |
+
for flow in reversed(self.flows):
|
48 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self,
|
54 |
+
in_channels,
|
55 |
+
out_channels,
|
56 |
+
hidden_channels,
|
57 |
+
kernel_size,
|
58 |
+
dilation_rate,
|
59 |
+
n_layers,
|
60 |
+
gin_channels=0):
|
61 |
+
super().__init__()
|
62 |
+
self.in_channels = in_channels
|
63 |
+
self.out_channels = out_channels
|
64 |
+
self.hidden_channels = hidden_channels
|
65 |
+
self.kernel_size = kernel_size
|
66 |
+
self.dilation_rate = dilation_rate
|
67 |
+
self.n_layers = n_layers
|
68 |
+
self.gin_channels = gin_channels
|
69 |
+
|
70 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
71 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
72 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
73 |
+
|
74 |
+
def forward(self, x, x_lengths, g=None):
|
75 |
+
# print(x.shape,x_lengths.shape)
|
76 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
77 |
+
x = self.pre(x) * x_mask
|
78 |
+
x = self.enc(x, x_mask, g=g)
|
79 |
+
stats = self.proj(x) * x_mask
|
80 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
81 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
82 |
+
return z, m, logs, x_mask
|
83 |
+
|
84 |
+
|
85 |
+
class TextEncoder(nn.Module):
|
86 |
+
def __init__(self,
|
87 |
+
out_channels,
|
88 |
+
hidden_channels,
|
89 |
+
kernel_size,
|
90 |
+
n_layers,
|
91 |
+
gin_channels=0,
|
92 |
+
filter_channels=None,
|
93 |
+
n_heads=None,
|
94 |
+
p_dropout=None):
|
95 |
+
super().__init__()
|
96 |
+
self.out_channels = out_channels
|
97 |
+
self.hidden_channels = hidden_channels
|
98 |
+
self.kernel_size = kernel_size
|
99 |
+
self.n_layers = n_layers
|
100 |
+
self.gin_channels = gin_channels
|
101 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
102 |
+
self.f0_emb = nn.Embedding(256, hidden_channels)
|
103 |
+
|
104 |
+
self.enc_ = attentions.Encoder(
|
105 |
+
hidden_channels,
|
106 |
+
filter_channels,
|
107 |
+
n_heads,
|
108 |
+
n_layers,
|
109 |
+
kernel_size,
|
110 |
+
p_dropout)
|
111 |
+
|
112 |
+
def forward(self, x, x_mask, f0=None, noice_scale=1):
|
113 |
+
x = x + self.f0_emb(f0).transpose(1,2)
|
114 |
+
x = self.enc_(x * x_mask, x_mask)
|
115 |
+
stats = self.proj(x) * x_mask
|
116 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
117 |
+
z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
|
118 |
+
|
119 |
+
return z, m, logs, x_mask
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
class DiscriminatorP(torch.nn.Module):
|
124 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
125 |
+
super(DiscriminatorP, self).__init__()
|
126 |
+
self.period = period
|
127 |
+
self.use_spectral_norm = use_spectral_norm
|
128 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
129 |
+
self.convs = nn.ModuleList([
|
130 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
131 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
132 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
133 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
134 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
135 |
+
])
|
136 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
fmap = []
|
140 |
+
|
141 |
+
# 1d to 2d
|
142 |
+
b, c, t = x.shape
|
143 |
+
if t % self.period != 0: # pad first
|
144 |
+
n_pad = self.period - (t % self.period)
|
145 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
146 |
+
t = t + n_pad
|
147 |
+
x = x.view(b, c, t // self.period, self.period)
|
148 |
+
|
149 |
+
for l in self.convs:
|
150 |
+
x = l(x)
|
151 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
152 |
+
fmap.append(x)
|
153 |
+
x = self.conv_post(x)
|
154 |
+
fmap.append(x)
|
155 |
+
x = torch.flatten(x, 1, -1)
|
156 |
+
|
157 |
+
return x, fmap
|
158 |
+
|
159 |
+
|
160 |
+
class DiscriminatorS(torch.nn.Module):
|
161 |
+
def __init__(self, use_spectral_norm=False):
|
162 |
+
super(DiscriminatorS, self).__init__()
|
163 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
164 |
+
self.convs = nn.ModuleList([
|
165 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
166 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
167 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
168 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
169 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
170 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
171 |
+
])
|
172 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
173 |
+
|
174 |
+
def forward(self, x):
|
175 |
+
fmap = []
|
176 |
+
|
177 |
+
for l in self.convs:
|
178 |
+
x = l(x)
|
179 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
180 |
+
fmap.append(x)
|
181 |
+
x = self.conv_post(x)
|
182 |
+
fmap.append(x)
|
183 |
+
x = torch.flatten(x, 1, -1)
|
184 |
+
|
185 |
+
return x, fmap
|
186 |
+
|
187 |
+
|
188 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
189 |
+
def __init__(self, use_spectral_norm=False):
|
190 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
191 |
+
periods = [2,3,5,7,11]
|
192 |
+
|
193 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
194 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
195 |
+
self.discriminators = nn.ModuleList(discs)
|
196 |
+
|
197 |
+
def forward(self, y, y_hat):
|
198 |
+
y_d_rs = []
|
199 |
+
y_d_gs = []
|
200 |
+
fmap_rs = []
|
201 |
+
fmap_gs = []
|
202 |
+
for i, d in enumerate(self.discriminators):
|
203 |
+
y_d_r, fmap_r = d(y)
|
204 |
+
y_d_g, fmap_g = d(y_hat)
|
205 |
+
y_d_rs.append(y_d_r)
|
206 |
+
y_d_gs.append(y_d_g)
|
207 |
+
fmap_rs.append(fmap_r)
|
208 |
+
fmap_gs.append(fmap_g)
|
209 |
+
|
210 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
211 |
+
|
212 |
+
|
213 |
+
class SpeakerEncoder(torch.nn.Module):
|
214 |
+
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
215 |
+
super(SpeakerEncoder, self).__init__()
|
216 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
217 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
218 |
+
self.relu = nn.ReLU()
|
219 |
+
|
220 |
+
def forward(self, mels):
|
221 |
+
self.lstm.flatten_parameters()
|
222 |
+
_, (hidden, _) = self.lstm(mels)
|
223 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
224 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
225 |
+
|
226 |
+
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
227 |
+
mel_slices = []
|
228 |
+
for i in range(0, total_frames-partial_frames, partial_hop):
|
229 |
+
mel_range = torch.arange(i, i+partial_frames)
|
230 |
+
mel_slices.append(mel_range)
|
231 |
+
|
232 |
+
return mel_slices
|
233 |
+
|
234 |
+
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
235 |
+
mel_len = mel.size(1)
|
236 |
+
last_mel = mel[:,-partial_frames:]
|
237 |
+
|
238 |
+
if mel_len > partial_frames:
|
239 |
+
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
240 |
+
mels = list(mel[:,s] for s in mel_slices)
|
241 |
+
mels.append(last_mel)
|
242 |
+
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
243 |
+
|
244 |
+
with torch.no_grad():
|
245 |
+
partial_embeds = self(mels)
|
246 |
+
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
247 |
+
#embed = embed / torch.linalg.norm(embed, 2)
|
248 |
+
else:
|
249 |
+
with torch.no_grad():
|
250 |
+
embed = self(last_mel)
|
251 |
+
|
252 |
+
return embed
|
253 |
+
|
254 |
+
class F0Decoder(nn.Module):
|
255 |
+
def __init__(self,
|
256 |
+
out_channels,
|
257 |
+
hidden_channels,
|
258 |
+
filter_channels,
|
259 |
+
n_heads,
|
260 |
+
n_layers,
|
261 |
+
kernel_size,
|
262 |
+
p_dropout,
|
263 |
+
spk_channels=0):
|
264 |
+
super().__init__()
|
265 |
+
self.out_channels = out_channels
|
266 |
+
self.hidden_channels = hidden_channels
|
267 |
+
self.filter_channels = filter_channels
|
268 |
+
self.n_heads = n_heads
|
269 |
+
self.n_layers = n_layers
|
270 |
+
self.kernel_size = kernel_size
|
271 |
+
self.p_dropout = p_dropout
|
272 |
+
self.spk_channels = spk_channels
|
273 |
+
|
274 |
+
self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
|
275 |
+
self.decoder = attentions.FFT(
|
276 |
+
hidden_channels,
|
277 |
+
filter_channels,
|
278 |
+
n_heads,
|
279 |
+
n_layers,
|
280 |
+
kernel_size,
|
281 |
+
p_dropout)
|
282 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
283 |
+
self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
|
284 |
+
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
|
285 |
+
|
286 |
+
def forward(self, x, norm_f0, x_mask, spk_emb=None):
|
287 |
+
x = torch.detach(x)
|
288 |
+
if (spk_emb is not None):
|
289 |
+
x = x + self.cond(spk_emb)
|
290 |
+
x += self.f0_prenet(norm_f0)
|
291 |
+
x = self.prenet(x) * x_mask
|
292 |
+
x = self.decoder(x * x_mask, x_mask)
|
293 |
+
x = self.proj(x) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class SynthesizerTrn(nn.Module):
|
298 |
+
"""
|
299 |
+
Synthesizer for Training
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self,
|
303 |
+
spec_channels,
|
304 |
+
segment_size,
|
305 |
+
inter_channels,
|
306 |
+
hidden_channels,
|
307 |
+
filter_channels,
|
308 |
+
n_heads,
|
309 |
+
n_layers,
|
310 |
+
kernel_size,
|
311 |
+
p_dropout,
|
312 |
+
resblock,
|
313 |
+
resblock_kernel_sizes,
|
314 |
+
resblock_dilation_sizes,
|
315 |
+
upsample_rates,
|
316 |
+
upsample_initial_channel,
|
317 |
+
upsample_kernel_sizes,
|
318 |
+
gin_channels,
|
319 |
+
ssl_dim,
|
320 |
+
n_speakers,
|
321 |
+
sampling_rate=44100,
|
322 |
+
**kwargs):
|
323 |
+
|
324 |
+
super().__init__()
|
325 |
+
self.spec_channels = spec_channels
|
326 |
+
self.inter_channels = inter_channels
|
327 |
+
self.hidden_channels = hidden_channels
|
328 |
+
self.filter_channels = filter_channels
|
329 |
+
self.n_heads = n_heads
|
330 |
+
self.n_layers = n_layers
|
331 |
+
self.kernel_size = kernel_size
|
332 |
+
self.p_dropout = p_dropout
|
333 |
+
self.resblock = resblock
|
334 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
335 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
336 |
+
self.upsample_rates = upsample_rates
|
337 |
+
self.upsample_initial_channel = upsample_initial_channel
|
338 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
339 |
+
self.segment_size = segment_size
|
340 |
+
self.gin_channels = gin_channels
|
341 |
+
self.ssl_dim = ssl_dim
|
342 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
343 |
+
|
344 |
+
self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
|
345 |
+
|
346 |
+
self.enc_p = TextEncoder(
|
347 |
+
inter_channels,
|
348 |
+
hidden_channels,
|
349 |
+
filter_channels=filter_channels,
|
350 |
+
n_heads=n_heads,
|
351 |
+
n_layers=n_layers,
|
352 |
+
kernel_size=kernel_size,
|
353 |
+
p_dropout=p_dropout
|
354 |
+
)
|
355 |
+
hps = {
|
356 |
+
"sampling_rate": sampling_rate,
|
357 |
+
"inter_channels": inter_channels,
|
358 |
+
"resblock": resblock,
|
359 |
+
"resblock_kernel_sizes": resblock_kernel_sizes,
|
360 |
+
"resblock_dilation_sizes": resblock_dilation_sizes,
|
361 |
+
"upsample_rates": upsample_rates,
|
362 |
+
"upsample_initial_channel": upsample_initial_channel,
|
363 |
+
"upsample_kernel_sizes": upsample_kernel_sizes,
|
364 |
+
"gin_channels": gin_channels,
|
365 |
+
}
|
366 |
+
self.dec = Generator(h=hps)
|
367 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
368 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
369 |
+
self.f0_decoder = F0Decoder(
|
370 |
+
1,
|
371 |
+
hidden_channels,
|
372 |
+
filter_channels,
|
373 |
+
n_heads,
|
374 |
+
n_layers,
|
375 |
+
kernel_size,
|
376 |
+
p_dropout,
|
377 |
+
spk_channels=gin_channels
|
378 |
+
)
|
379 |
+
self.emb_uv = nn.Embedding(2, hidden_channels)
|
380 |
+
|
381 |
+
def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
|
382 |
+
g = self.emb_g(g).transpose(1,2)
|
383 |
+
# ssl prenet
|
384 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
|
385 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
|
386 |
+
|
387 |
+
# f0 predict
|
388 |
+
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
389 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
|
390 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
391 |
+
|
392 |
+
# encoder
|
393 |
+
z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
|
394 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
395 |
+
|
396 |
+
# flow
|
397 |
+
z_p = self.flow(z, spec_mask, g=g)
|
398 |
+
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
|
399 |
+
|
400 |
+
# nsf decoder
|
401 |
+
o = self.dec(z_slice, g=g, f0=pitch_slice)
|
402 |
+
|
403 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
|
404 |
+
|
405 |
+
def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
|
406 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
407 |
+
g = self.emb_g(g).transpose(1,2)
|
408 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
|
409 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
|
410 |
+
|
411 |
+
if predict_f0:
|
412 |
+
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
413 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
|
414 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
415 |
+
f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
|
416 |
+
|
417 |
+
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
|
418 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
419 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
420 |
+
return o,f0
|
modules/F0Predictor/CrepeF0Predictor.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
from modules.F0Predictor.crepe import CrepePitchExtractor
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class CrepeF0Predictor(F0Predictor):
|
6 |
+
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"):
|
7 |
+
self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model)
|
8 |
+
self.hop_length = hop_length
|
9 |
+
self.f0_min = f0_min
|
10 |
+
self.f0_max = f0_max
|
11 |
+
self.device = device
|
12 |
+
self.threshold = threshold
|
13 |
+
self.sampling_rate = sampling_rate
|
14 |
+
|
15 |
+
def compute_f0(self,wav,p_len=None):
|
16 |
+
x = torch.FloatTensor(wav).to(self.device)
|
17 |
+
if p_len is None:
|
18 |
+
p_len = x.shape[0]//self.hop_length
|
19 |
+
else:
|
20 |
+
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
21 |
+
f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len)
|
22 |
+
return f0
|
23 |
+
|
24 |
+
def compute_f0_uv(self,wav,p_len=None):
|
25 |
+
x = torch.FloatTensor(wav).to(self.device)
|
26 |
+
if p_len is None:
|
27 |
+
p_len = x.shape[0]//self.hop_length
|
28 |
+
else:
|
29 |
+
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
30 |
+
f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len)
|
31 |
+
return f0,uv
|
modules/F0Predictor/DioF0Predictor.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
import pyworld
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class DioF0Predictor(F0Predictor):
|
6 |
+
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
7 |
+
self.hop_length = hop_length
|
8 |
+
self.f0_min = f0_min
|
9 |
+
self.f0_max = f0_max
|
10 |
+
self.sampling_rate = sampling_rate
|
11 |
+
|
12 |
+
def interpolate_f0(self,f0):
|
13 |
+
'''
|
14 |
+
对F0进行插值处理
|
15 |
+
'''
|
16 |
+
|
17 |
+
data = np.reshape(f0, (f0.size, 1))
|
18 |
+
|
19 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
20 |
+
vuv_vector[data > 0.0] = 1.0
|
21 |
+
vuv_vector[data <= 0.0] = 0.0
|
22 |
+
|
23 |
+
ip_data = data
|
24 |
+
|
25 |
+
frame_number = data.size
|
26 |
+
last_value = 0.0
|
27 |
+
for i in range(frame_number):
|
28 |
+
if data[i] <= 0.0:
|
29 |
+
j = i + 1
|
30 |
+
for j in range(i + 1, frame_number):
|
31 |
+
if data[j] > 0.0:
|
32 |
+
break
|
33 |
+
if j < frame_number - 1:
|
34 |
+
if last_value > 0.0:
|
35 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
36 |
+
for k in range(i, j):
|
37 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
38 |
+
else:
|
39 |
+
for k in range(i, j):
|
40 |
+
ip_data[k] = data[j]
|
41 |
+
else:
|
42 |
+
for k in range(i, frame_number):
|
43 |
+
ip_data[k] = last_value
|
44 |
+
else:
|
45 |
+
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
46 |
+
last_value = data[i]
|
47 |
+
|
48 |
+
return ip_data[:,0], vuv_vector[:,0]
|
49 |
+
|
50 |
+
def resize_f0(self,x, target_len):
|
51 |
+
source = np.array(x)
|
52 |
+
source[source<0.001] = np.nan
|
53 |
+
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
54 |
+
res = np.nan_to_num(target)
|
55 |
+
return res
|
56 |
+
|
57 |
+
def compute_f0(self,wav,p_len=None):
|
58 |
+
if p_len is None:
|
59 |
+
p_len = wav.shape[0]//self.hop_length
|
60 |
+
f0, t = pyworld.dio(
|
61 |
+
wav.astype(np.double),
|
62 |
+
fs=self.sampling_rate,
|
63 |
+
f0_floor=self.f0_min,
|
64 |
+
f0_ceil=self.f0_max,
|
65 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
66 |
+
)
|
67 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
68 |
+
for index, pitch in enumerate(f0):
|
69 |
+
f0[index] = round(pitch, 1)
|
70 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
71 |
+
|
72 |
+
def compute_f0_uv(self,wav,p_len=None):
|
73 |
+
if p_len is None:
|
74 |
+
p_len = wav.shape[0]//self.hop_length
|
75 |
+
f0, t = pyworld.dio(
|
76 |
+
wav.astype(np.double),
|
77 |
+
fs=self.sampling_rate,
|
78 |
+
f0_floor=self.f0_min,
|
79 |
+
f0_ceil=self.f0_max,
|
80 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
81 |
+
)
|
82 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
83 |
+
for index, pitch in enumerate(f0):
|
84 |
+
f0[index] = round(pitch, 1)
|
85 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
modules/F0Predictor/F0Predictor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class F0Predictor(object):
|
2 |
+
def compute_f0(self,wav,p_len):
|
3 |
+
'''
|
4 |
+
input: wav:[signal_length]
|
5 |
+
p_len:int
|
6 |
+
output: f0:[signal_length//hop_length]
|
7 |
+
'''
|
8 |
+
pass
|
9 |
+
|
10 |
+
def compute_f0_uv(self,wav,p_len):
|
11 |
+
'''
|
12 |
+
input: wav:[signal_length]
|
13 |
+
p_len:int
|
14 |
+
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
15 |
+
'''
|
16 |
+
pass
|
modules/F0Predictor/HarvestF0Predictor.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
import pyworld
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class HarvestF0Predictor(F0Predictor):
|
6 |
+
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
7 |
+
self.hop_length = hop_length
|
8 |
+
self.f0_min = f0_min
|
9 |
+
self.f0_max = f0_max
|
10 |
+
self.sampling_rate = sampling_rate
|
11 |
+
|
12 |
+
def interpolate_f0(self,f0):
|
13 |
+
'''
|
14 |
+
对F0进行插值处理
|
15 |
+
'''
|
16 |
+
|
17 |
+
data = np.reshape(f0, (f0.size, 1))
|
18 |
+
|
19 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
20 |
+
vuv_vector[data > 0.0] = 1.0
|
21 |
+
vuv_vector[data <= 0.0] = 0.0
|
22 |
+
|
23 |
+
ip_data = data
|
24 |
+
|
25 |
+
frame_number = data.size
|
26 |
+
last_value = 0.0
|
27 |
+
for i in range(frame_number):
|
28 |
+
if data[i] <= 0.0:
|
29 |
+
j = i + 1
|
30 |
+
for j in range(i + 1, frame_number):
|
31 |
+
if data[j] > 0.0:
|
32 |
+
break
|
33 |
+
if j < frame_number - 1:
|
34 |
+
if last_value > 0.0:
|
35 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
36 |
+
for k in range(i, j):
|
37 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
38 |
+
else:
|
39 |
+
for k in range(i, j):
|
40 |
+
ip_data[k] = data[j]
|
41 |
+
else:
|
42 |
+
for k in range(i, frame_number):
|
43 |
+
ip_data[k] = last_value
|
44 |
+
else:
|
45 |
+
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
46 |
+
last_value = data[i]
|
47 |
+
|
48 |
+
return ip_data[:,0], vuv_vector[:,0]
|
49 |
+
|
50 |
+
def resize_f0(self,x, target_len):
|
51 |
+
source = np.array(x)
|
52 |
+
source[source<0.001] = np.nan
|
53 |
+
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
54 |
+
res = np.nan_to_num(target)
|
55 |
+
return res
|
56 |
+
|
57 |
+
def compute_f0(self,wav,p_len=None):
|
58 |
+
if p_len is None:
|
59 |
+
p_len = wav.shape[0]//self.hop_length
|
60 |
+
f0, t = pyworld.harvest(
|
61 |
+
wav.astype(np.double),
|
62 |
+
fs=self.hop_length,
|
63 |
+
f0_ceil=self.f0_max,
|
64 |
+
f0_floor=self.f0_min,
|
65 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
66 |
+
)
|
67 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
68 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
69 |
+
|
70 |
+
def compute_f0_uv(self,wav,p_len=None):
|
71 |
+
if p_len is None:
|
72 |
+
p_len = wav.shape[0]//self.hop_length
|
73 |
+
f0, t = pyworld.harvest(
|
74 |
+
wav.astype(np.double),
|
75 |
+
fs=self.sampling_rate,
|
76 |
+
f0_floor=self.f0_min,
|
77 |
+
f0_ceil=self.f0_max,
|
78 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
79 |
+
)
|
80 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
81 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
modules/F0Predictor/PMF0Predictor.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
import parselmouth
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class PMF0Predictor(F0Predictor):
|
6 |
+
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
7 |
+
self.hop_length = hop_length
|
8 |
+
self.f0_min = f0_min
|
9 |
+
self.f0_max = f0_max
|
10 |
+
self.sampling_rate = sampling_rate
|
11 |
+
|
12 |
+
|
13 |
+
def interpolate_f0(self,f0):
|
14 |
+
'''
|
15 |
+
对F0进行插值处理
|
16 |
+
'''
|
17 |
+
|
18 |
+
data = np.reshape(f0, (f0.size, 1))
|
19 |
+
|
20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
+
vuv_vector[data > 0.0] = 1.0
|
22 |
+
vuv_vector[data <= 0.0] = 0.0
|
23 |
+
|
24 |
+
ip_data = data
|
25 |
+
|
26 |
+
frame_number = data.size
|
27 |
+
last_value = 0.0
|
28 |
+
for i in range(frame_number):
|
29 |
+
if data[i] <= 0.0:
|
30 |
+
j = i + 1
|
31 |
+
for j in range(i + 1, frame_number):
|
32 |
+
if data[j] > 0.0:
|
33 |
+
break
|
34 |
+
if j < frame_number - 1:
|
35 |
+
if last_value > 0.0:
|
36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
+
for k in range(i, j):
|
38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
+
else:
|
40 |
+
for k in range(i, j):
|
41 |
+
ip_data[k] = data[j]
|
42 |
+
else:
|
43 |
+
for k in range(i, frame_number):
|
44 |
+
ip_data[k] = last_value
|
45 |
+
else:
|
46 |
+
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
47 |
+
last_value = data[i]
|
48 |
+
|
49 |
+
return ip_data[:,0], vuv_vector[:,0]
|
50 |
+
|
51 |
+
def compute_f0(self,wav,p_len=None):
|
52 |
+
x = wav
|
53 |
+
if p_len is None:
|
54 |
+
p_len = x.shape[0]//self.hop_length
|
55 |
+
else:
|
56 |
+
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
57 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
58 |
+
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
|
59 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
60 |
+
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
61 |
+
|
62 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
63 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
64 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
65 |
+
f0,uv = self.interpolate_f0(f0)
|
66 |
+
return f0
|
67 |
+
|
68 |
+
def compute_f0_uv(self,wav,p_len=None):
|
69 |
+
x = wav
|
70 |
+
if p_len is None:
|
71 |
+
p_len = x.shape[0]//self.hop_length
|
72 |
+
else:
|
73 |
+
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
74 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
75 |
+
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
|
76 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
77 |
+
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
78 |
+
|
79 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
80 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
81 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
82 |
+
f0,uv = self.interpolate_f0(f0)
|
83 |
+
return f0,uv
|
modules/F0Predictor/__init__.py
ADDED
File without changes
|
modules/F0Predictor/crepe.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional,Union
|
2 |
+
try:
|
3 |
+
from typing import Literal
|
4 |
+
except Exception as e:
|
5 |
+
from typing_extensions import Literal
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torchcrepe
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
import scipy
|
12 |
+
|
13 |
+
#from:https://github.com/fishaudio/fish-diffusion
|
14 |
+
|
15 |
+
def repeat_expand(
|
16 |
+
content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
|
17 |
+
):
|
18 |
+
"""Repeat content to target length.
|
19 |
+
This is a wrapper of torch.nn.functional.interpolate.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
content (torch.Tensor): tensor
|
23 |
+
target_len (int): target length
|
24 |
+
mode (str, optional): interpolation mode. Defaults to "nearest".
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
torch.Tensor: tensor
|
28 |
+
"""
|
29 |
+
|
30 |
+
ndim = content.ndim
|
31 |
+
|
32 |
+
if content.ndim == 1:
|
33 |
+
content = content[None, None]
|
34 |
+
elif content.ndim == 2:
|
35 |
+
content = content[None]
|
36 |
+
|
37 |
+
assert content.ndim == 3
|
38 |
+
|
39 |
+
is_np = isinstance(content, np.ndarray)
|
40 |
+
if is_np:
|
41 |
+
content = torch.from_numpy(content)
|
42 |
+
|
43 |
+
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
44 |
+
|
45 |
+
if is_np:
|
46 |
+
results = results.numpy()
|
47 |
+
|
48 |
+
if ndim == 1:
|
49 |
+
return results[0, 0]
|
50 |
+
elif ndim == 2:
|
51 |
+
return results[0]
|
52 |
+
|
53 |
+
|
54 |
+
class BasePitchExtractor:
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
hop_length: int = 512,
|
58 |
+
f0_min: float = 50.0,
|
59 |
+
f0_max: float = 1100.0,
|
60 |
+
keep_zeros: bool = True,
|
61 |
+
):
|
62 |
+
"""Base pitch extractor.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
hop_length (int, optional): Hop length. Defaults to 512.
|
66 |
+
f0_min (float, optional): Minimum f0. Defaults to 50.0.
|
67 |
+
f0_max (float, optional): Maximum f0. Defaults to 1100.0.
|
68 |
+
keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True.
|
69 |
+
"""
|
70 |
+
|
71 |
+
self.hop_length = hop_length
|
72 |
+
self.f0_min = f0_min
|
73 |
+
self.f0_max = f0_max
|
74 |
+
self.keep_zeros = keep_zeros
|
75 |
+
|
76 |
+
def __call__(self, x, sampling_rate=44100, pad_to=None):
|
77 |
+
raise NotImplementedError("BasePitchExtractor is not callable.")
|
78 |
+
|
79 |
+
def post_process(self, x, sampling_rate, f0, pad_to):
|
80 |
+
if isinstance(f0, np.ndarray):
|
81 |
+
f0 = torch.from_numpy(f0).float().to(x.device)
|
82 |
+
|
83 |
+
if pad_to is None:
|
84 |
+
return f0
|
85 |
+
|
86 |
+
f0 = repeat_expand(f0, pad_to)
|
87 |
+
|
88 |
+
if self.keep_zeros:
|
89 |
+
return f0
|
90 |
+
|
91 |
+
vuv_vector = torch.zeros_like(f0)
|
92 |
+
vuv_vector[f0 > 0.0] = 1.0
|
93 |
+
vuv_vector[f0 <= 0.0] = 0.0
|
94 |
+
|
95 |
+
# 去掉0频率, 并线性插值
|
96 |
+
nzindex = torch.nonzero(f0).squeeze()
|
97 |
+
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
98 |
+
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
99 |
+
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
100 |
+
|
101 |
+
if f0.shape[0] <= 0:
|
102 |
+
return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)
|
103 |
+
|
104 |
+
if f0.shape[0] == 1:
|
105 |
+
return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
|
106 |
+
|
107 |
+
# 大概可以用 torch 重写?
|
108 |
+
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
109 |
+
vuv_vector = vuv_vector.cpu().numpy()
|
110 |
+
vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
|
111 |
+
|
112 |
+
return f0,vuv_vector
|
113 |
+
|
114 |
+
|
115 |
+
class MaskedAvgPool1d(nn.Module):
|
116 |
+
def __init__(
|
117 |
+
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
|
118 |
+
):
|
119 |
+
"""An implementation of mean pooling that supports masked values.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
kernel_size (int): The size of the median pooling window.
|
123 |
+
stride (int, optional): The stride of the median pooling window. Defaults to None.
|
124 |
+
padding (int, optional): The padding of the median pooling window. Defaults to 0.
|
125 |
+
"""
|
126 |
+
|
127 |
+
super(MaskedAvgPool1d, self).__init__()
|
128 |
+
self.kernel_size = kernel_size
|
129 |
+
self.stride = stride or kernel_size
|
130 |
+
self.padding = padding
|
131 |
+
|
132 |
+
def forward(self, x, mask=None):
|
133 |
+
ndim = x.dim()
|
134 |
+
if ndim == 2:
|
135 |
+
x = x.unsqueeze(1)
|
136 |
+
|
137 |
+
assert (
|
138 |
+
x.dim() == 3
|
139 |
+
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
|
140 |
+
|
141 |
+
# Apply the mask by setting masked elements to zero, or make NaNs zero
|
142 |
+
if mask is None:
|
143 |
+
mask = ~torch.isnan(x)
|
144 |
+
|
145 |
+
# Ensure mask has the same shape as the input tensor
|
146 |
+
assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
|
147 |
+
|
148 |
+
masked_x = torch.where(mask, x, torch.zeros_like(x))
|
149 |
+
# Create a ones kernel with the same number of channels as the input tensor
|
150 |
+
ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device)
|
151 |
+
|
152 |
+
# Perform sum pooling
|
153 |
+
sum_pooled = nn.functional.conv1d(
|
154 |
+
masked_x,
|
155 |
+
ones_kernel,
|
156 |
+
stride=self.stride,
|
157 |
+
padding=self.padding,
|
158 |
+
groups=x.size(1),
|
159 |
+
)
|
160 |
+
|
161 |
+
# Count the non-masked (valid) elements in each pooling window
|
162 |
+
valid_count = nn.functional.conv1d(
|
163 |
+
mask.float(),
|
164 |
+
ones_kernel,
|
165 |
+
stride=self.stride,
|
166 |
+
padding=self.padding,
|
167 |
+
groups=x.size(1),
|
168 |
+
)
|
169 |
+
valid_count = valid_count.clamp(min=1) # Avoid division by zero
|
170 |
+
|
171 |
+
# Perform masked average pooling
|
172 |
+
avg_pooled = sum_pooled / valid_count
|
173 |
+
|
174 |
+
# Fill zero values with NaNs
|
175 |
+
avg_pooled[avg_pooled == 0] = float("nan")
|
176 |
+
|
177 |
+
if ndim == 2:
|
178 |
+
return avg_pooled.squeeze(1)
|
179 |
+
|
180 |
+
return avg_pooled
|
181 |
+
|
182 |
+
|
183 |
+
class MaskedMedianPool1d(nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
|
186 |
+
):
|
187 |
+
"""An implementation of median pooling that supports masked values.
|
188 |
+
|
189 |
+
This implementation is inspired by the median pooling implementation in
|
190 |
+
https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598
|
191 |
+
|
192 |
+
Args:
|
193 |
+
kernel_size (int): The size of the median pooling window.
|
194 |
+
stride (int, optional): The stride of the median pooling window. Defaults to None.
|
195 |
+
padding (int, optional): The padding of the median pooling window. Defaults to 0.
|
196 |
+
"""
|
197 |
+
|
198 |
+
super(MaskedMedianPool1d, self).__init__()
|
199 |
+
self.kernel_size = kernel_size
|
200 |
+
self.stride = stride or kernel_size
|
201 |
+
self.padding = padding
|
202 |
+
|
203 |
+
def forward(self, x, mask=None):
|
204 |
+
ndim = x.dim()
|
205 |
+
if ndim == 2:
|
206 |
+
x = x.unsqueeze(1)
|
207 |
+
|
208 |
+
assert (
|
209 |
+
x.dim() == 3
|
210 |
+
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
|
211 |
+
|
212 |
+
if mask is None:
|
213 |
+
mask = ~torch.isnan(x)
|
214 |
+
|
215 |
+
assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
|
216 |
+
|
217 |
+
masked_x = torch.where(mask, x, torch.zeros_like(x))
|
218 |
+
|
219 |
+
x = F.pad(masked_x, (self.padding, self.padding), mode="reflect")
|
220 |
+
mask = F.pad(
|
221 |
+
mask.float(), (self.padding, self.padding), mode="constant", value=0
|
222 |
+
)
|
223 |
+
|
224 |
+
x = x.unfold(2, self.kernel_size, self.stride)
|
225 |
+
mask = mask.unfold(2, self.kernel_size, self.stride)
|
226 |
+
|
227 |
+
x = x.contiguous().view(x.size()[:3] + (-1,))
|
228 |
+
mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device)
|
229 |
+
|
230 |
+
# Combine the mask with the input tensor
|
231 |
+
#x_masked = torch.where(mask.bool(), x, torch.fill_(torch.zeros_like(x),float("inf")))
|
232 |
+
x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device))
|
233 |
+
|
234 |
+
# Sort the masked tensor along the last dimension
|
235 |
+
x_sorted, _ = torch.sort(x_masked, dim=-1)
|
236 |
+
|
237 |
+
# Compute the count of non-masked (valid) values
|
238 |
+
valid_count = mask.sum(dim=-1)
|
239 |
+
|
240 |
+
# Calculate the index of the median value for each pooling window
|
241 |
+
median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0)
|
242 |
+
|
243 |
+
# Gather the median values using the calculated indices
|
244 |
+
median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1)
|
245 |
+
|
246 |
+
# Fill infinite values with NaNs
|
247 |
+
median_pooled[torch.isinf(median_pooled)] = float("nan")
|
248 |
+
|
249 |
+
if ndim == 2:
|
250 |
+
return median_pooled.squeeze(1)
|
251 |
+
|
252 |
+
return median_pooled
|
253 |
+
|
254 |
+
|
255 |
+
class CrepePitchExtractor(BasePitchExtractor):
|
256 |
+
def __init__(
|
257 |
+
self,
|
258 |
+
hop_length: int = 512,
|
259 |
+
f0_min: float = 50.0,
|
260 |
+
f0_max: float = 1100.0,
|
261 |
+
threshold: float = 0.05,
|
262 |
+
keep_zeros: bool = False,
|
263 |
+
device = None,
|
264 |
+
model: Literal["full", "tiny"] = "full",
|
265 |
+
use_fast_filters: bool = True,
|
266 |
+
decoder="viterbi"
|
267 |
+
):
|
268 |
+
super().__init__(hop_length, f0_min, f0_max, keep_zeros)
|
269 |
+
if decoder == "viterbi":
|
270 |
+
self.decoder = torchcrepe.decode.viterbi
|
271 |
+
elif decoder == "argmax":
|
272 |
+
self.decoder = torchcrepe.decode.argmax
|
273 |
+
elif decoder == "weighted_argmax":
|
274 |
+
self.decoder = torchcrepe.decode.weighted_argmax
|
275 |
+
else:
|
276 |
+
raise "Unknown decoder"
|
277 |
+
self.threshold = threshold
|
278 |
+
self.model = model
|
279 |
+
self.use_fast_filters = use_fast_filters
|
280 |
+
self.hop_length = hop_length
|
281 |
+
if device is None:
|
282 |
+
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
283 |
+
else:
|
284 |
+
self.dev = torch.device(device)
|
285 |
+
if self.use_fast_filters:
|
286 |
+
self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device)
|
287 |
+
self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device)
|
288 |
+
|
289 |
+
def __call__(self, x, sampling_rate=44100, pad_to=None):
|
290 |
+
"""Extract pitch using crepe.
|
291 |
+
|
292 |
+
|
293 |
+
Args:
|
294 |
+
x (torch.Tensor): Audio signal, shape (1, T).
|
295 |
+
sampling_rate (int, optional): Sampling rate. Defaults to 44100.
|
296 |
+
pad_to (int, optional): Pad to length. Defaults to None.
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
torch.Tensor: Pitch, shape (T // hop_length,).
|
300 |
+
"""
|
301 |
+
|
302 |
+
assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor."
|
303 |
+
assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels."
|
304 |
+
|
305 |
+
x = x.to(self.dev)
|
306 |
+
f0, pd = torchcrepe.predict(
|
307 |
+
x,
|
308 |
+
sampling_rate,
|
309 |
+
self.hop_length,
|
310 |
+
self.f0_min,
|
311 |
+
self.f0_max,
|
312 |
+
pad=True,
|
313 |
+
model=self.model,
|
314 |
+
batch_size=1024,
|
315 |
+
device=x.device,
|
316 |
+
return_periodicity=True,
|
317 |
+
decoder=self.decoder
|
318 |
+
)
|
319 |
+
|
320 |
+
# Filter, remove silence, set uv threshold, refer to the original warehouse readme
|
321 |
+
if self.use_fast_filters:
|
322 |
+
pd = self.median_filter(pd)
|
323 |
+
else:
|
324 |
+
pd = torchcrepe.filter.median(pd, 3)
|
325 |
+
|
326 |
+
pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
|
327 |
+
f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
|
328 |
+
|
329 |
+
if self.use_fast_filters:
|
330 |
+
f0 = self.mean_filter(f0)
|
331 |
+
else:
|
332 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
333 |
+
|
334 |
+
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
|
335 |
+
|
336 |
+
if torch.all(f0 == 0):
|
337 |
+
rtn = f0.cpu().numpy() if pad_to==None else np.zeros(pad_to)
|
338 |
+
return rtn,rtn
|
339 |
+
|
340 |
+
return self.post_process(x, sampling_rate, f0, pad_to)
|
modules/__init__.py
ADDED
File without changes
|
modules/attentions.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
from modules.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class FFT(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
15 |
+
proximal_bias=False, proximal_init=True, **kwargs):
|
16 |
+
super().__init__()
|
17 |
+
self.hidden_channels = hidden_channels
|
18 |
+
self.filter_channels = filter_channels
|
19 |
+
self.n_heads = n_heads
|
20 |
+
self.n_layers = n_layers
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.proximal_bias = proximal_bias
|
24 |
+
self.proximal_init = proximal_init
|
25 |
+
|
26 |
+
self.drop = nn.Dropout(p_dropout)
|
27 |
+
self.self_attn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_0 = nn.ModuleList()
|
29 |
+
self.ffn_layers = nn.ModuleList()
|
30 |
+
self.norm_layers_1 = nn.ModuleList()
|
31 |
+
for i in range(self.n_layers):
|
32 |
+
self.self_attn_layers.append(
|
33 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
34 |
+
proximal_init=proximal_init))
|
35 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
36 |
+
self.ffn_layers.append(
|
37 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
38 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
39 |
+
|
40 |
+
def forward(self, x, x_mask):
|
41 |
+
"""
|
42 |
+
x: decoder input
|
43 |
+
h: encoder output
|
44 |
+
"""
|
45 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
46 |
+
x = x * x_mask
|
47 |
+
for i in range(self.n_layers):
|
48 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
49 |
+
y = self.drop(y)
|
50 |
+
x = self.norm_layers_0[i](x + y)
|
51 |
+
|
52 |
+
y = self.ffn_layers[i](x, x_mask)
|
53 |
+
y = self.drop(y)
|
54 |
+
x = self.norm_layers_1[i](x + y)
|
55 |
+
x = x * x_mask
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class Encoder(nn.Module):
|
60 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
61 |
+
super().__init__()
|
62 |
+
self.hidden_channels = hidden_channels
|
63 |
+
self.filter_channels = filter_channels
|
64 |
+
self.n_heads = n_heads
|
65 |
+
self.n_layers = n_layers
|
66 |
+
self.kernel_size = kernel_size
|
67 |
+
self.p_dropout = p_dropout
|
68 |
+
self.window_size = window_size
|
69 |
+
|
70 |
+
self.drop = nn.Dropout(p_dropout)
|
71 |
+
self.attn_layers = nn.ModuleList()
|
72 |
+
self.norm_layers_1 = nn.ModuleList()
|
73 |
+
self.ffn_layers = nn.ModuleList()
|
74 |
+
self.norm_layers_2 = nn.ModuleList()
|
75 |
+
for i in range(self.n_layers):
|
76 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
77 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
78 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
79 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
80 |
+
|
81 |
+
def forward(self, x, x_mask):
|
82 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
83 |
+
x = x * x_mask
|
84 |
+
for i in range(self.n_layers):
|
85 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
86 |
+
y = self.drop(y)
|
87 |
+
x = self.norm_layers_1[i](x + y)
|
88 |
+
|
89 |
+
y = self.ffn_layers[i](x, x_mask)
|
90 |
+
y = self.drop(y)
|
91 |
+
x = self.norm_layers_2[i](x + y)
|
92 |
+
x = x * x_mask
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
class Decoder(nn.Module):
|
97 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
98 |
+
super().__init__()
|
99 |
+
self.hidden_channels = hidden_channels
|
100 |
+
self.filter_channels = filter_channels
|
101 |
+
self.n_heads = n_heads
|
102 |
+
self.n_layers = n_layers
|
103 |
+
self.kernel_size = kernel_size
|
104 |
+
self.p_dropout = p_dropout
|
105 |
+
self.proximal_bias = proximal_bias
|
106 |
+
self.proximal_init = proximal_init
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.self_attn_layers = nn.ModuleList()
|
110 |
+
self.norm_layers_0 = nn.ModuleList()
|
111 |
+
self.encdec_attn_layers = nn.ModuleList()
|
112 |
+
self.norm_layers_1 = nn.ModuleList()
|
113 |
+
self.ffn_layers = nn.ModuleList()
|
114 |
+
self.norm_layers_2 = nn.ModuleList()
|
115 |
+
for i in range(self.n_layers):
|
116 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
119 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
120 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
121 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
122 |
+
|
123 |
+
def forward(self, x, x_mask, h, h_mask):
|
124 |
+
"""
|
125 |
+
x: decoder input
|
126 |
+
h: encoder output
|
127 |
+
"""
|
128 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
129 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
130 |
+
x = x * x_mask
|
131 |
+
for i in range(self.n_layers):
|
132 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
133 |
+
y = self.drop(y)
|
134 |
+
x = self.norm_layers_0[i](x + y)
|
135 |
+
|
136 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
137 |
+
y = self.drop(y)
|
138 |
+
x = self.norm_layers_1[i](x + y)
|
139 |
+
|
140 |
+
y = self.ffn_layers[i](x, x_mask)
|
141 |
+
y = self.drop(y)
|
142 |
+
x = self.norm_layers_2[i](x + y)
|
143 |
+
x = x * x_mask
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
class MultiHeadAttention(nn.Module):
|
148 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
149 |
+
super().__init__()
|
150 |
+
assert channels % n_heads == 0
|
151 |
+
|
152 |
+
self.channels = channels
|
153 |
+
self.out_channels = out_channels
|
154 |
+
self.n_heads = n_heads
|
155 |
+
self.p_dropout = p_dropout
|
156 |
+
self.window_size = window_size
|
157 |
+
self.heads_share = heads_share
|
158 |
+
self.block_length = block_length
|
159 |
+
self.proximal_bias = proximal_bias
|
160 |
+
self.proximal_init = proximal_init
|
161 |
+
self.attn = None
|
162 |
+
|
163 |
+
self.k_channels = channels // n_heads
|
164 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
165 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
166 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
167 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
168 |
+
self.drop = nn.Dropout(p_dropout)
|
169 |
+
|
170 |
+
if window_size is not None:
|
171 |
+
n_heads_rel = 1 if heads_share else n_heads
|
172 |
+
rel_stddev = self.k_channels**-0.5
|
173 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
174 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
175 |
+
|
176 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
177 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
178 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
179 |
+
if proximal_init:
|
180 |
+
with torch.no_grad():
|
181 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
182 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
183 |
+
|
184 |
+
def forward(self, x, c, attn_mask=None):
|
185 |
+
q = self.conv_q(x)
|
186 |
+
k = self.conv_k(c)
|
187 |
+
v = self.conv_v(c)
|
188 |
+
|
189 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
190 |
+
|
191 |
+
x = self.conv_o(x)
|
192 |
+
return x
|
193 |
+
|
194 |
+
def attention(self, query, key, value, mask=None):
|
195 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
196 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
197 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
198 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
199 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
200 |
+
|
201 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
202 |
+
if self.window_size is not None:
|
203 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
204 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
205 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
206 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
207 |
+
scores = scores + scores_local
|
208 |
+
if self.proximal_bias:
|
209 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
210 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
211 |
+
if mask is not None:
|
212 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
213 |
+
if self.block_length is not None:
|
214 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
215 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
216 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
217 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
218 |
+
p_attn = self.drop(p_attn)
|
219 |
+
output = torch.matmul(p_attn, value)
|
220 |
+
if self.window_size is not None:
|
221 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
222 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
223 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
224 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
225 |
+
return output, p_attn
|
226 |
+
|
227 |
+
def _matmul_with_relative_values(self, x, y):
|
228 |
+
"""
|
229 |
+
x: [b, h, l, m]
|
230 |
+
y: [h or 1, m, d]
|
231 |
+
ret: [b, h, l, d]
|
232 |
+
"""
|
233 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
234 |
+
return ret
|
235 |
+
|
236 |
+
def _matmul_with_relative_keys(self, x, y):
|
237 |
+
"""
|
238 |
+
x: [b, h, l, d]
|
239 |
+
y: [h or 1, m, d]
|
240 |
+
ret: [b, h, l, m]
|
241 |
+
"""
|
242 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
243 |
+
return ret
|
244 |
+
|
245 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
246 |
+
max_relative_position = 2 * self.window_size + 1
|
247 |
+
# Pad first before slice to avoid using cond ops.
|
248 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
249 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
250 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
251 |
+
if pad_length > 0:
|
252 |
+
padded_relative_embeddings = F.pad(
|
253 |
+
relative_embeddings,
|
254 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
255 |
+
else:
|
256 |
+
padded_relative_embeddings = relative_embeddings
|
257 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
258 |
+
return used_relative_embeddings
|
259 |
+
|
260 |
+
def _relative_position_to_absolute_position(self, x):
|
261 |
+
"""
|
262 |
+
x: [b, h, l, 2*l-1]
|
263 |
+
ret: [b, h, l, l]
|
264 |
+
"""
|
265 |
+
batch, heads, length, _ = x.size()
|
266 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
267 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
268 |
+
|
269 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
270 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
271 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
272 |
+
|
273 |
+
# Reshape and slice out the padded elements.
|
274 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
275 |
+
return x_final
|
276 |
+
|
277 |
+
def _absolute_position_to_relative_position(self, x):
|
278 |
+
"""
|
279 |
+
x: [b, h, l, l]
|
280 |
+
ret: [b, h, l, 2*l-1]
|
281 |
+
"""
|
282 |
+
batch, heads, length, _ = x.size()
|
283 |
+
# padd along column
|
284 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
285 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
286 |
+
# add 0's in the beginning that will skew the elements after reshape
|
287 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
288 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
289 |
+
return x_final
|
290 |
+
|
291 |
+
def _attention_bias_proximal(self, length):
|
292 |
+
"""Bias for self-attention to encourage attention to close positions.
|
293 |
+
Args:
|
294 |
+
length: an integer scalar.
|
295 |
+
Returns:
|
296 |
+
a Tensor with shape [1, 1, length, length]
|
297 |
+
"""
|
298 |
+
r = torch.arange(length, dtype=torch.float32)
|
299 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
300 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
301 |
+
|
302 |
+
|
303 |
+
class FFN(nn.Module):
|
304 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
305 |
+
super().__init__()
|
306 |
+
self.in_channels = in_channels
|
307 |
+
self.out_channels = out_channels
|
308 |
+
self.filter_channels = filter_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.p_dropout = p_dropout
|
311 |
+
self.activation = activation
|
312 |
+
self.causal = causal
|
313 |
+
|
314 |
+
if causal:
|
315 |
+
self.padding = self._causal_padding
|
316 |
+
else:
|
317 |
+
self.padding = self._same_padding
|
318 |
+
|
319 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
320 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
321 |
+
self.drop = nn.Dropout(p_dropout)
|
322 |
+
|
323 |
+
def forward(self, x, x_mask):
|
324 |
+
x = self.conv_1(self.padding(x * x_mask))
|
325 |
+
if self.activation == "gelu":
|
326 |
+
x = x * torch.sigmoid(1.702 * x)
|
327 |
+
else:
|
328 |
+
x = torch.relu(x)
|
329 |
+
x = self.drop(x)
|
330 |
+
x = self.conv_2(self.padding(x * x_mask))
|
331 |
+
return x * x_mask
|
332 |
+
|
333 |
+
def _causal_padding(self, x):
|
334 |
+
if self.kernel_size == 1:
|
335 |
+
return x
|
336 |
+
pad_l = self.kernel_size - 1
|
337 |
+
pad_r = 0
|
338 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
339 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
340 |
+
return x
|
341 |
+
|
342 |
+
def _same_padding(self, x):
|
343 |
+
if self.kernel_size == 1:
|
344 |
+
return x
|
345 |
+
pad_l = (self.kernel_size - 1) // 2
|
346 |
+
pad_r = self.kernel_size // 2
|
347 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
348 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
349 |
+
return x
|
modules/commons.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
def slice_pitch_segments(x, ids_str, segment_size=4):
|
8 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
9 |
+
for i in range(x.size(0)):
|
10 |
+
idx_str = ids_str[i]
|
11 |
+
idx_end = idx_str + segment_size
|
12 |
+
ret[i] = x[i, idx_str:idx_end]
|
13 |
+
return ret
|
14 |
+
|
15 |
+
def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
|
16 |
+
b, d, t = x.size()
|
17 |
+
if x_lengths is None:
|
18 |
+
x_lengths = t
|
19 |
+
ids_str_max = x_lengths - segment_size + 1
|
20 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
21 |
+
ret = slice_segments(x, ids_str, segment_size)
|
22 |
+
ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
|
23 |
+
return ret, ret_pitch, ids_str
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def get_padding(kernel_size, dilation=1):
|
32 |
+
return int((kernel_size*dilation - dilation)/2)
|
33 |
+
|
34 |
+
|
35 |
+
def convert_pad_shape(pad_shape):
|
36 |
+
l = pad_shape[::-1]
|
37 |
+
pad_shape = [item for sublist in l for item in sublist]
|
38 |
+
return pad_shape
|
39 |
+
|
40 |
+
|
41 |
+
def intersperse(lst, item):
|
42 |
+
result = [item] * (len(lst) * 2 + 1)
|
43 |
+
result[1::2] = lst
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
48 |
+
"""KL(P||Q)"""
|
49 |
+
kl = (logs_q - logs_p) - 0.5
|
50 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
51 |
+
return kl
|
52 |
+
|
53 |
+
|
54 |
+
def rand_gumbel(shape):
|
55 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
56 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
57 |
+
return -torch.log(-torch.log(uniform_samples))
|
58 |
+
|
59 |
+
|
60 |
+
def rand_gumbel_like(x):
|
61 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
62 |
+
return g
|
63 |
+
|
64 |
+
|
65 |
+
def slice_segments(x, ids_str, segment_size=4):
|
66 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
67 |
+
for i in range(x.size(0)):
|
68 |
+
idx_str = ids_str[i]
|
69 |
+
idx_end = idx_str + segment_size
|
70 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
71 |
+
return ret
|
72 |
+
|
73 |
+
|
74 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
75 |
+
b, d, t = x.size()
|
76 |
+
if x_lengths is None:
|
77 |
+
x_lengths = t
|
78 |
+
ids_str_max = x_lengths - segment_size + 1
|
79 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
80 |
+
ret = slice_segments(x, ids_str, segment_size)
|
81 |
+
return ret, ids_str
|
82 |
+
|
83 |
+
|
84 |
+
def rand_spec_segments(x, x_lengths=None, segment_size=4):
|
85 |
+
b, d, t = x.size()
|
86 |
+
if x_lengths is None:
|
87 |
+
x_lengths = t
|
88 |
+
ids_str_max = x_lengths - segment_size
|
89 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
90 |
+
ret = slice_segments(x, ids_str, segment_size)
|
91 |
+
return ret, ids_str
|
92 |
+
|
93 |
+
|
94 |
+
def get_timing_signal_1d(
|
95 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
96 |
+
position = torch.arange(length, dtype=torch.float)
|
97 |
+
num_timescales = channels // 2
|
98 |
+
log_timescale_increment = (
|
99 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
100 |
+
(num_timescales - 1))
|
101 |
+
inv_timescales = min_timescale * torch.exp(
|
102 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
103 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
104 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
105 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
106 |
+
signal = signal.view(1, channels, length)
|
107 |
+
return signal
|
108 |
+
|
109 |
+
|
110 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
111 |
+
b, channels, length = x.size()
|
112 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
114 |
+
|
115 |
+
|
116 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
117 |
+
b, channels, length = x.size()
|
118 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
119 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
120 |
+
|
121 |
+
|
122 |
+
def subsequent_mask(length):
|
123 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
124 |
+
return mask
|
125 |
+
|
126 |
+
|
127 |
+
@torch.jit.script
|
128 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
129 |
+
n_channels_int = n_channels[0]
|
130 |
+
in_act = input_a + input_b
|
131 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
132 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
133 |
+
acts = t_act * s_act
|
134 |
+
return acts
|
135 |
+
|
136 |
+
|
137 |
+
def convert_pad_shape(pad_shape):
|
138 |
+
l = pad_shape[::-1]
|
139 |
+
pad_shape = [item for sublist in l for item in sublist]
|
140 |
+
return pad_shape
|
141 |
+
|
142 |
+
|
143 |
+
def shift_1d(x):
|
144 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
def sequence_mask(length, max_length=None):
|
149 |
+
if max_length is None:
|
150 |
+
max_length = length.max()
|
151 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
152 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
153 |
+
|
154 |
+
|
155 |
+
def generate_path(duration, mask):
|
156 |
+
"""
|
157 |
+
duration: [b, 1, t_x]
|
158 |
+
mask: [b, 1, t_y, t_x]
|
159 |
+
"""
|
160 |
+
device = duration.device
|
161 |
+
|
162 |
+
b, _, t_y, t_x = mask.shape
|
163 |
+
cum_duration = torch.cumsum(duration, -1)
|
164 |
+
|
165 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
166 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
167 |
+
path = path.view(b, t_x, t_y)
|
168 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
169 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
170 |
+
return path
|
171 |
+
|
172 |
+
|
173 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
174 |
+
if isinstance(parameters, torch.Tensor):
|
175 |
+
parameters = [parameters]
|
176 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
177 |
+
norm_type = float(norm_type)
|
178 |
+
if clip_value is not None:
|
179 |
+
clip_value = float(clip_value)
|
180 |
+
|
181 |
+
total_norm = 0
|
182 |
+
for p in parameters:
|
183 |
+
param_norm = p.grad.data.norm(norm_type)
|
184 |
+
total_norm += param_norm.item() ** norm_type
|
185 |
+
if clip_value is not None:
|
186 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
187 |
+
total_norm = total_norm ** (1. / norm_type)
|
188 |
+
return total_norm
|
modules/enhancer.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from vdecoder.nsf_hifigan.nvSTFT import STFT
|
5 |
+
from vdecoder.nsf_hifigan.models import load_model
|
6 |
+
from torchaudio.transforms import Resample
|
7 |
+
|
8 |
+
class Enhancer:
|
9 |
+
def __init__(self, enhancer_type, enhancer_ckpt, device=None):
|
10 |
+
if device is None:
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
self.device = device
|
13 |
+
|
14 |
+
if enhancer_type == 'nsf-hifigan':
|
15 |
+
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device)
|
16 |
+
else:
|
17 |
+
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}")
|
18 |
+
|
19 |
+
self.resample_kernel = {}
|
20 |
+
self.enhancer_sample_rate = self.enhancer.sample_rate()
|
21 |
+
self.enhancer_hop_size = self.enhancer.hop_size()
|
22 |
+
|
23 |
+
def enhance(self,
|
24 |
+
audio, # 1, T
|
25 |
+
sample_rate,
|
26 |
+
f0, # 1, n_frames, 1
|
27 |
+
hop_size,
|
28 |
+
adaptive_key = 0,
|
29 |
+
silence_front = 0
|
30 |
+
):
|
31 |
+
# enhancer start time
|
32 |
+
start_frame = int(silence_front * sample_rate / hop_size)
|
33 |
+
real_silence_front = start_frame * hop_size / sample_rate
|
34 |
+
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ]
|
35 |
+
f0 = f0[: , start_frame :, :]
|
36 |
+
|
37 |
+
# adaptive parameters
|
38 |
+
adaptive_factor = 2 ** ( -adaptive_key / 12)
|
39 |
+
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100))
|
40 |
+
real_factor = self.enhancer_sample_rate / adaptive_sample_rate
|
41 |
+
|
42 |
+
# resample the ddsp output
|
43 |
+
if sample_rate == adaptive_sample_rate:
|
44 |
+
audio_res = audio
|
45 |
+
else:
|
46 |
+
key_str = str(sample_rate) + str(adaptive_sample_rate)
|
47 |
+
if key_str not in self.resample_kernel:
|
48 |
+
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device)
|
49 |
+
audio_res = self.resample_kernel[key_str](audio)
|
50 |
+
|
51 |
+
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1)
|
52 |
+
|
53 |
+
# resample f0
|
54 |
+
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy()
|
55 |
+
f0_np *= real_factor
|
56 |
+
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor
|
57 |
+
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames)
|
58 |
+
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1])
|
59 |
+
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames
|
60 |
+
|
61 |
+
# enhance
|
62 |
+
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res)
|
63 |
+
|
64 |
+
# resample the enhanced output
|
65 |
+
if adaptive_factor != 0:
|
66 |
+
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate)
|
67 |
+
if key_str not in self.resample_kernel:
|
68 |
+
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device)
|
69 |
+
enhanced_audio = self.resample_kernel[key_str](enhanced_audio)
|
70 |
+
|
71 |
+
# pad the silence frames
|
72 |
+
if start_frame > 0:
|
73 |
+
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0))
|
74 |
+
|
75 |
+
return enhanced_audio, enhancer_sample_rate
|
76 |
+
|
77 |
+
|
78 |
+
class NsfHifiGAN(torch.nn.Module):
|
79 |
+
def __init__(self, model_path, device=None):
|
80 |
+
super().__init__()
|
81 |
+
if device is None:
|
82 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
83 |
+
self.device = device
|
84 |
+
print('| Load HifiGAN: ', model_path)
|
85 |
+
self.model, self.h = load_model(model_path, device=self.device)
|
86 |
+
|
87 |
+
def sample_rate(self):
|
88 |
+
return self.h.sampling_rate
|
89 |
+
|
90 |
+
def hop_size(self):
|
91 |
+
return self.h.hop_size
|
92 |
+
|
93 |
+
def forward(self, audio, f0):
|
94 |
+
stft = STFT(
|
95 |
+
self.h.sampling_rate,
|
96 |
+
self.h.num_mels,
|
97 |
+
self.h.n_fft,
|
98 |
+
self.h.win_size,
|
99 |
+
self.h.hop_size,
|
100 |
+
self.h.fmin,
|
101 |
+
self.h.fmax)
|
102 |
+
with torch.no_grad():
|
103 |
+
mel = stft.get_mel(audio)
|
104 |
+
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1)
|
105 |
+
return enhanced_audio, self.h.sampling_rate
|
modules/losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import modules.commons as commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
#print(logs_p)
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
modules/mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
modules/modules.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import modules.commons as commons
|
13 |
+
from modules.commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
48 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
49 |
+
self.relu_drop = nn.Sequential(
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers-1):
|
53 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
54 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
55 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
56 |
+
self.proj.weight.data.zero_()
|
57 |
+
self.proj.bias.data.zero_()
|
58 |
+
|
59 |
+
def forward(self, x, x_mask):
|
60 |
+
x_org = x
|
61 |
+
for i in range(self.n_layers):
|
62 |
+
x = self.conv_layers[i](x * x_mask)
|
63 |
+
x = self.norm_layers[i](x)
|
64 |
+
x = self.relu_drop(x)
|
65 |
+
x = x_org + self.proj(x)
|
66 |
+
return x * x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class DDSConv(nn.Module):
|
70 |
+
"""
|
71 |
+
Dialted and Depth-Separable Convolution
|
72 |
+
"""
|
73 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
74 |
+
super().__init__()
|
75 |
+
self.channels = channels
|
76 |
+
self.kernel_size = kernel_size
|
77 |
+
self.n_layers = n_layers
|
78 |
+
self.p_dropout = p_dropout
|
79 |
+
|
80 |
+
self.drop = nn.Dropout(p_dropout)
|
81 |
+
self.convs_sep = nn.ModuleList()
|
82 |
+
self.convs_1x1 = nn.ModuleList()
|
83 |
+
self.norms_1 = nn.ModuleList()
|
84 |
+
self.norms_2 = nn.ModuleList()
|
85 |
+
for i in range(n_layers):
|
86 |
+
dilation = kernel_size ** i
|
87 |
+
padding = (kernel_size * dilation - dilation) // 2
|
88 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
89 |
+
groups=channels, dilation=dilation, padding=padding
|
90 |
+
))
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels =hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
133 |
+
dilation=dilation, padding=padding)
|
134 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
135 |
+
self.in_layers.append(in_layer)
|
136 |
+
|
137 |
+
# last one is not necessary
|
138 |
+
if i < n_layers - 1:
|
139 |
+
res_skip_channels = 2 * hidden_channels
|
140 |
+
else:
|
141 |
+
res_skip_channels = hidden_channels
|
142 |
+
|
143 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
144 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
145 |
+
self.res_skip_layers.append(res_skip_layer)
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
148 |
+
output = torch.zeros_like(x)
|
149 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
150 |
+
|
151 |
+
if g is not None:
|
152 |
+
g = self.cond_layer(g)
|
153 |
+
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
x_in = self.in_layers[i](x)
|
156 |
+
if g is not None:
|
157 |
+
cond_offset = i * 2 * self.hidden_channels
|
158 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
159 |
+
else:
|
160 |
+
g_l = torch.zeros_like(x_in)
|
161 |
+
|
162 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
163 |
+
x_in,
|
164 |
+
g_l,
|
165 |
+
n_channels_tensor)
|
166 |
+
acts = self.drop(acts)
|
167 |
+
|
168 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
169 |
+
if i < self.n_layers - 1:
|
170 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
171 |
+
x = (x + res_acts) * x_mask
|
172 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
173 |
+
else:
|
174 |
+
output = output + res_skip_acts
|
175 |
+
return output * x_mask
|
176 |
+
|
177 |
+
def remove_weight_norm(self):
|
178 |
+
if self.gin_channels != 0:
|
179 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
180 |
+
for l in self.in_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
for l in self.res_skip_layers:
|
183 |
+
torch.nn.utils.remove_weight_norm(l)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock1(torch.nn.Module):
|
187 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
188 |
+
super(ResBlock1, self).__init__()
|
189 |
+
self.convs1 = nn.ModuleList([
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
191 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
193 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
194 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
195 |
+
padding=get_padding(kernel_size, dilation[2])))
|
196 |
+
])
|
197 |
+
self.convs1.apply(init_weights)
|
198 |
+
|
199 |
+
self.convs2 = nn.ModuleList([
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1))),
|
204 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
205 |
+
padding=get_padding(kernel_size, 1)))
|
206 |
+
])
|
207 |
+
self.convs2.apply(init_weights)
|
208 |
+
|
209 |
+
def forward(self, x, x_mask=None):
|
210 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
211 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
212 |
+
if x_mask is not None:
|
213 |
+
xt = xt * x_mask
|
214 |
+
xt = c1(xt)
|
215 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
216 |
+
if x_mask is not None:
|
217 |
+
xt = xt * x_mask
|
218 |
+
xt = c2(xt)
|
219 |
+
x = xt + x
|
220 |
+
if x_mask is not None:
|
221 |
+
x = x * x_mask
|
222 |
+
return x
|
223 |
+
|
224 |
+
def remove_weight_norm(self):
|
225 |
+
for l in self.convs1:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
for l in self.convs2:
|
228 |
+
remove_weight_norm(l)
|
229 |
+
|
230 |
+
|
231 |
+
class ResBlock2(torch.nn.Module):
|
232 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
233 |
+
super(ResBlock2, self).__init__()
|
234 |
+
self.convs = nn.ModuleList([
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
237 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
238 |
+
padding=get_padding(kernel_size, dilation[1])))
|
239 |
+
])
|
240 |
+
self.convs.apply(init_weights)
|
241 |
+
|
242 |
+
def forward(self, x, x_mask=None):
|
243 |
+
for c in self.convs:
|
244 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
if x_mask is not None:
|
246 |
+
xt = xt * x_mask
|
247 |
+
xt = c(xt)
|
248 |
+
x = xt + x
|
249 |
+
if x_mask is not None:
|
250 |
+
x = x * x_mask
|
251 |
+
return x
|
252 |
+
|
253 |
+
def remove_weight_norm(self):
|
254 |
+
for l in self.convs:
|
255 |
+
remove_weight_norm(l)
|
256 |
+
|
257 |
+
|
258 |
+
class Log(nn.Module):
|
259 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
260 |
+
if not reverse:
|
261 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
262 |
+
logdet = torch.sum(-y, [1, 2])
|
263 |
+
return y, logdet
|
264 |
+
else:
|
265 |
+
x = torch.exp(x) * x_mask
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
class Flip(nn.Module):
|
270 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
271 |
+
x = torch.flip(x, [1])
|
272 |
+
if not reverse:
|
273 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
274 |
+
return x, logdet
|
275 |
+
else:
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class ElementwiseAffine(nn.Module):
|
280 |
+
def __init__(self, channels):
|
281 |
+
super().__init__()
|
282 |
+
self.channels = channels
|
283 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
284 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
|
286 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
287 |
+
if not reverse:
|
288 |
+
y = self.m + torch.exp(self.logs) * x
|
289 |
+
y = y * x_mask
|
290 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
291 |
+
return y, logdet
|
292 |
+
else:
|
293 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class ResidualCouplingLayer(nn.Module):
|
298 |
+
def __init__(self,
|
299 |
+
channels,
|
300 |
+
hidden_channels,
|
301 |
+
kernel_size,
|
302 |
+
dilation_rate,
|
303 |
+
n_layers,
|
304 |
+
p_dropout=0,
|
305 |
+
gin_channels=0,
|
306 |
+
mean_only=False):
|
307 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
308 |
+
super().__init__()
|
309 |
+
self.channels = channels
|
310 |
+
self.hidden_channels = hidden_channels
|
311 |
+
self.kernel_size = kernel_size
|
312 |
+
self.dilation_rate = dilation_rate
|
313 |
+
self.n_layers = n_layers
|
314 |
+
self.half_channels = channels // 2
|
315 |
+
self.mean_only = mean_only
|
316 |
+
|
317 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
318 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
319 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
320 |
+
self.post.weight.data.zero_()
|
321 |
+
self.post.bias.data.zero_()
|
322 |
+
|
323 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
324 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
325 |
+
h = self.pre(x0) * x_mask
|
326 |
+
h = self.enc(h, x_mask, g=g)
|
327 |
+
stats = self.post(h) * x_mask
|
328 |
+
if not self.mean_only:
|
329 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
330 |
+
else:
|
331 |
+
m = stats
|
332 |
+
logs = torch.zeros_like(m)
|
333 |
+
|
334 |
+
if not reverse:
|
335 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
336 |
+
x = torch.cat([x0, x1], 1)
|
337 |
+
logdet = torch.sum(logs, [1,2])
|
338 |
+
return x, logdet
|
339 |
+
else:
|
340 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
341 |
+
x = torch.cat([x0, x1], 1)
|
342 |
+
return x
|
pretrain/checkpoint_best_legacy_500.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60d936ec5a566776fc392e69ad8b630d14eb588111233fe313436e200a7b187b
|
3 |
+
size 1330114945
|
pretrain/meta.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def download_dict():
|
2 |
+
return {
|
3 |
+
"vec768l12": {
|
4 |
+
"url": "https://ibm.ent.box.com/shared/static/z1wgl1stco8ffooyatzdwsqn2psd9lrr",
|
5 |
+
"output": "./pretrain/checkpoint_best_legacy_500.pt"
|
6 |
+
},
|
7 |
+
"vec256l9": {
|
8 |
+
"url": "https://ibm.ent.box.com/shared/static/z1wgl1stco8ffooyatzdwsqn2psd9lrr",
|
9 |
+
"output": "./pretrain/checkpoint_best_legacy_500.pt"
|
10 |
+
},
|
11 |
+
"hubertsoft": {
|
12 |
+
"url": "https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt",
|
13 |
+
"output": "./pretrain/hubert-soft-0d54a1f4.pt"
|
14 |
+
},
|
15 |
+
"whisper-ppg": {
|
16 |
+
"url": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
|
17 |
+
"output": "./pretrain/medium.pt"
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_speech_encoder(config_path="configs/config.json"):
|
23 |
+
import json
|
24 |
+
|
25 |
+
with open(config_path, "r") as f:
|
26 |
+
data = f.read()
|
27 |
+
config = json.loads(data)
|
28 |
+
speech_encoder = config["model"]["speech_encoder"]
|
29 |
+
dict = download_dict()
|
30 |
+
|
31 |
+
return dict[speech_encoder]["url"], dict[speech_encoder]["output"]
|
pretrain/nsf_hifigan/NOTICE.txt
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- DiffSinger Community Vocoder ---
|
2 |
+
|
3 |
+
ARCHITECTURE: NSF-HiFiGAN
|
4 |
+
RELEASE DATE: 2022-12-11
|
5 |
+
|
6 |
+
HYPER PARAMETERS:
|
7 |
+
- 44100 sample rate
|
8 |
+
- 128 mel bins
|
9 |
+
- 512 hop size
|
10 |
+
- 2048 window size
|
11 |
+
- fmin at 40Hz
|
12 |
+
- fmax at 16000Hz
|
13 |
+
|
14 |
+
|
15 |
+
NOTICE:
|
16 |
+
|
17 |
+
All model weights in the [DiffSinger Community Vocoder Project](https://openvpi.github.io/vocoders/), including
|
18 |
+
model weights in this directory, are provided by the [OpenVPI Team](https://github.com/openvpi/), under the
|
19 |
+
[Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/) license.
|
20 |
+
|
21 |
+
|
22 |
+
ACKNOWLEDGEMENTS:
|
23 |
+
|
24 |
+
Training data of this vocoder is provided and permitted by the following organizations, societies and individuals:
|
25 |
+
|
26 |
+
孙飒 https://www.qfssr.cn
|
27 |
+
赤松_Akamatsu https://www.zhibin.club
|
28 |
+
乐威 https://www.zhibin.club
|
29 |
+
伯添 https://space.bilibili.com/24087011
|
30 |
+
雲宇光 https://space.bilibili.com/660675050
|
31 |
+
橙子言 https://space.bilibili.com/318486464
|
32 |
+
人衣大人 https://space.bilibili.com/2270344
|
33 |
+
玖蝶 https://space.bilibili.com/676771003
|
34 |
+
Yuuko
|
35 |
+
白夜零BYL https://space.bilibili.com/1605040503
|
36 |
+
嗷天 https://space.bilibili.com/5675252
|
37 |
+
洛泠羽 https://space.bilibili.com/347373318
|
38 |
+
灰条纹的灰猫君 https://space.bilibili.com/2083633
|
39 |
+
幽寂 https://space.bilibili.com/478860
|
40 |
+
恶魔王女 https://space.bilibili.com/2475098
|
41 |
+
AlexYHX 芮晴
|
42 |
+
绮萱 https://y.qq.com/n/ryqq/singer/003HjD6H4aZn1K
|
43 |
+
诗芸 https://y.qq.com/n/ryqq/singer/0005NInj142zm0
|
44 |
+
汐蕾 https://y.qq.com/n/ryqq/singer/0023cWMH1Bq1PJ
|
45 |
+
1262917464
|
46 |
+
炜阳
|
47 |
+
叶卡yolka
|
48 |
+
幸の夏 https://space.bilibili.com/1017297686
|
49 |
+
暮色未量 https://space.bilibili.com/272904686
|
50 |
+
晓寞sama https://space.bilibili.com/3463394
|
51 |
+
没头绪的节操君
|
52 |
+
串串BunC https://space.bilibili.com/95817834
|
53 |
+
落雨 https://space.bilibili.com/1292427
|
54 |
+
长尾巴的翎艾 https://space.bilibili.com/1638666
|
55 |
+
声闻计划 https://space.bilibili.com/392812269
|
56 |
+
唐家大小姐 http://5sing.kugou.com/palmusic/default.html
|
57 |
+
不伊子
|
58 |
+
|
59 |
+
Training machines are provided by:
|
60 |
+
|
61 |
+
花儿不哭 https://space.bilibili.com/5760446
|
62 |
+
|
63 |
+
|
64 |
+
TERMS OF REDISTRIBUTIONS:
|
65 |
+
|
66 |
+
1. Do not sell this vocoder, or charge any fees from redistributing it, as prohibited by
|
67 |
+
the license.
|
68 |
+
2. Include a copy of the CC BY-NC-SA 4.0 license, or a link referring to it.
|
69 |
+
3. Include a copy of this notice, or any other notices informing that this vocoder is
|
70 |
+
provided by the OpenVPI Team, that this vocoder is licensed under CC BY-NC-SA 4.0, and
|
71 |
+
with a complete acknowledgement list as shown above.
|
72 |
+
4. If you fine-tuned or modified the weights, leave a notice about what has been changed.
|
73 |
+
5. (Optional) Leave a link to the official release page of the vocoder, and tell users
|
74 |
+
that other versions and future updates of this vocoder can be obtained from the website.
|
pretrain/nsf_hifigan/NOTICE.zh-CN.txt
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- DiffSinger 社区声码器 ---
|
2 |
+
|
3 |
+
架构:NSF-HiFiGAN
|
4 |
+
发布日期:2022-12-11
|
5 |
+
|
6 |
+
超参数:
|
7 |
+
- 44100 sample rate
|
8 |
+
- 128 mel bins
|
9 |
+
- 512 hop size
|
10 |
+
- 2048 window size
|
11 |
+
- fmin at 40Hz
|
12 |
+
- fmax at 16000Hz
|
13 |
+
|
14 |
+
|
15 |
+
注意事项:
|
16 |
+
|
17 |
+
[DiffSinger 社区声码器企划](https://openvpi.github.io/vocoders/) 中的所有模型权重,
|
18 |
+
包括此目录下的模型权重,均由 [OpenVPI Team](https://github.com/openvpi/) 提供,并基于
|
19 |
+
[Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
20 |
+
进行许可。
|
21 |
+
|
22 |
+
|
23 |
+
致谢:
|
24 |
+
|
25 |
+
此声码器的训练数据由以下组织、社团和个人提供并许可:
|
26 |
+
|
27 |
+
孙飒 https://www.qfssr.cn
|
28 |
+
赤松_Akamatsu https://www.zhibin.club
|
29 |
+
乐威 https://www.zhibin.club
|
30 |
+
伯添 https://space.bilibili.com/24087011
|
31 |
+
雲宇光 https://space.bilibili.com/660675050
|
32 |
+
橙子言 https://space.bilibili.com/318486464
|
33 |
+
人衣大人 https://space.bilibili.com/2270344
|
34 |
+
玖蝶 https://space.bilibili.com/676771003
|
35 |
+
Yuuko
|
36 |
+
白夜零BYL https://space.bilibili.com/1605040503
|
37 |
+
嗷天 https://space.bilibili.com/5675252
|
38 |
+
洛泠羽 https://space.bilibili.com/347373318
|
39 |
+
灰条纹的灰猫君 https://space.bilibili.com/2083633
|
40 |
+
幽寂 https://space.bilibili.com/478860
|
41 |
+
恶魔王女 https://space.bilibili.com/2475098
|
42 |
+
AlexYHX 芮晴
|
43 |
+
绮萱 https://y.qq.com/n/ryqq/singer/003HjD6H4aZn1K
|
44 |
+
诗芸 https://y.qq.com/n/ryqq/singer/0005NInj142zm0
|
45 |
+
汐蕾 https://y.qq.com/n/ryqq/singer/0023cWMH1Bq1PJ
|
46 |
+
1262917464
|
47 |
+
炜阳
|
48 |
+
叶卡yolka
|
49 |
+
幸の夏 https://space.bilibili.com/1017297686
|
50 |
+
暮色未量 https://space.bilibili.com/272904686
|
51 |
+
晓寞sama https://space.bilibili.com/3463394
|
52 |
+
没头绪的节操君
|
53 |
+
串串BunC https://space.bilibili.com/95817834
|
54 |
+
落雨 https://space.bilibili.com/1292427
|
55 |
+
长尾巴的翎艾 https://space.bilibili.com/1638666
|
56 |
+
声闻计划 https://space.bilibili.com/392812269
|
57 |
+
唐家大小姐 http://5sing.kugou.com/palmusic/default.html
|
58 |
+
不伊子
|
59 |
+
|
60 |
+
训练算力的提供者如下:
|
61 |
+
|
62 |
+
花儿不哭 https://space.bilibili.com/5760446
|
63 |
+
|
64 |
+
|
65 |
+
二次分发条款:
|
66 |
+
|
67 |
+
1. 请勿售卖此声码器或从其二次分发过程中收取任何费用,因为此类行为受到许可证的禁止。
|
68 |
+
2. 请在二次分发文件中包含一份 CC BY-NC-SA 4.0 许可证的副本或指向该许可证的链接。
|
69 |
+
3. 请在二次分发文件中包含这份声明,或以其他形式声明此声码器由 OpenVPI Team 提供并基于 CC BY-NC-SA 4.0 许可,
|
70 |
+
并附带上述完整的致谢名单。
|
71 |
+
4. 如果您微调或修改了权重,请留下一份关于其受到了何种修改的说明。
|
72 |
+
5.(可选)留下一份指向此声码器的官方发布页面的链接,并告知使用者可从该网站获取此声码器的其他版本和未来的更新。
|
pretrain/nsf_hifigan/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 4,
|
4 |
+
"batch_size": 10,
|
5 |
+
"learning_rate": 0.0002,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [ 8, 8, 2, 2, 2],
|
12 |
+
"upsample_kernel_sizes": [16,16, 4, 4, 4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
"discriminator_periods": [3, 5, 7, 11, 17, 23, 37],
|
17 |
+
|
18 |
+
"segment_size": 16384,
|
19 |
+
"num_mels": 128,
|
20 |
+
"num_freq": 1025,
|
21 |
+
"n_fft" : 2048,
|
22 |
+
"hop_size": 512,
|
23 |
+
"win_size": 2048,
|
24 |
+
|
25 |
+
"sampling_rate": 44100,
|
26 |
+
|
27 |
+
"fmin": 40,
|
28 |
+
"fmax": 16000,
|
29 |
+
"fmax_for_loss": null,
|
30 |
+
|
31 |
+
"num_workers": 16,
|
32 |
+
|
33 |
+
"dist_config": {
|
34 |
+
"dist_backend": "nccl",
|
35 |
+
"dist_url": "tcp://localhost:54321",
|
36 |
+
"world_size": 1
|
37 |
+
}
|
38 |
+
}
|
pretrain/put_hubert_ckpt_here
ADDED
File without changes
|