Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import PyPDF2
|
3 |
+
import gradio as gr
|
4 |
+
from IPython.display import Audio, display
|
5 |
+
from transformers import pipeline
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
import numpy as np
|
8 |
+
import scipy
|
9 |
+
from gtts import gTTS
|
10 |
+
from io import BytesIO
|
11 |
+
|
12 |
+
def extract_text(article):
|
13 |
+
pdfReader = PyPDF2.PdfReader(article)
|
14 |
+
pageObj = pdfReader.pages[0]
|
15 |
+
return pageObj.extract_text()
|
16 |
+
|
17 |
+
def summarize_abstract(text):
|
18 |
+
sentences = text.split(". ")
|
19 |
+
for i, sentence in enumerate(sentences):
|
20 |
+
if "Abstract" in sentence:
|
21 |
+
start = i + 1
|
22 |
+
end = start + 6
|
23 |
+
break
|
24 |
+
abstract = ". ".join(sentences[start:end+1])
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary")
|
26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/led-base-book-summary")
|
27 |
+
|
28 |
+
# Tokenize abstract
|
29 |
+
inputs = tokenizer(abstract, max_length=1024, return_tensors="pt", truncation=True)
|
30 |
+
|
31 |
+
# Generate summary
|
32 |
+
summary_ids = model.generate(inputs['input_ids'], max_length=50, min_length=30, no_repeat_ngram_size=3, encoder_no_repeat_ngram_size=3, repetition_penalty=3.5, num_beams=4, do_sample=True,early_stopping=False)
|
33 |
+
|
34 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
if '.' in summary:
|
37 |
+
index = summary.rindex('.')
|
38 |
+
if index != -1:
|
39 |
+
summary = summary[:index+1]
|
40 |
+
|
41 |
+
return summary
|
42 |
+
|
43 |
+
def abstract_to_audio(text):
|
44 |
+
tts = gTTS(text, lang='en')
|
45 |
+
buffer = BytesIO()
|
46 |
+
tts.write_to_fp(buffer)
|
47 |
+
buffer.seek(0)
|
48 |
+
return buffer.read()
|
49 |
+
|
50 |
+
def abstract_audio(article):
|
51 |
+
text = extract_text(article)
|
52 |
+
summary = summarize_abstract(text)
|
53 |
+
audio = abstract_to_audio(summary)
|
54 |
+
return summary, audio
|
55 |
+
|
56 |
+
inputs = gr.File()
|
57 |
+
summary_text = gr.Text()
|
58 |
+
audio_summary = gr.Audio()
|
59 |
+
|
60 |
+
|
61 |
+
myApp = gr.Interface( fn= abstract_audio, inputs=gr.File(),
|
62 |
+
outputs=[gr.Text(),gr.Audio()], title="Summary of Abstract to Audio ", description="An App that helps you summarises the abstract of an Article\Journal and gives the audio of the summary", examples=["/content/NIPS-2015-hidden-technical-debt-in-machine-learning-systems-Paper.pdf"]
|
63 |
+
)
|
64 |
+
|
65 |
+
myApp.launch()
|