fast_detect_gpt / detect_gpt.py
azra-kml's picture
Upload 30 files
aefc9ef verified
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os.path
import numpy as np
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import re
import torch
import tqdm
import argparse
import json
from data_builder import load_data, save_data
from metrics import get_roc_metrics, get_precision_recall_metrics
from model import load_tokenizer, load_model, get_model_fullname, from_pretrained
# define regex to match all <extra_id_*> tokens, where * is an integer
pattern = re.compile(r"<extra_id_\d+>")
def load_mask_model(model_name, device, cache_dir):
model_name = get_model_fullname(model_name)
# mask filling t5 model
print(f'Loading mask filling model {model_name}...')
mask_model = from_pretrained(AutoModelForSeq2SeqLM, model_name, {}, cache_dir)
mask_model = mask_model.to(device)
return mask_model
def load_mask_tokenizer(model_name, max_length, cache_dir):
model_name = get_model_fullname(model_name)
tokenizer = from_pretrained(AutoTokenizer, model_name, {'model_max_length': max_length}, cache_dir)
return tokenizer
def tokenize_and_mask(text, span_length, pct, ceil_pct=False):
buffer_size = 1
tokens = text.split(' ')
mask_string = '<<<mask>>>'
n_spans = pct * len(tokens) / (span_length + buffer_size * 2)
if ceil_pct:
n_spans = np.ceil(n_spans)
n_spans = int(n_spans)
n_masks = 0
while n_masks < n_spans:
start = np.random.randint(0, len(tokens) - span_length)
end = start + span_length
search_start = max(0, start - buffer_size)
search_end = min(len(tokens), end + buffer_size)
if mask_string not in tokens[search_start:search_end]:
tokens[start:end] = [mask_string]
n_masks += 1
# replace each occurrence of mask_string with <extra_id_NUM>, where NUM increments
num_filled = 0
for idx, token in enumerate(tokens):
if token == mask_string:
tokens[idx] = f'<extra_id_{num_filled}>'
num_filled += 1
assert num_filled == n_masks, f"num_filled {num_filled} != n_masks {n_masks}"
text = ' '.join(tokens)
return text
def count_masks(texts):
return [len([x for x in text.split() if x.startswith("<extra_id_")]) for text in texts]
# replace each masked span with a sample from T5 mask_model
def replace_masks(args, mask_model, mask_tokenizer, texts):
n_expected = count_masks(texts)
stop_id = mask_tokenizer.encode(f"<extra_id_{max(n_expected)}>")[0]
tokens = mask_tokenizer(texts, return_tensors="pt", padding=True).to(args.device)
outputs = mask_model.generate(**tokens, max_length=150, do_sample=True, top_p=args.mask_top_p,
num_return_sequences=1, eos_token_id=stop_id)
return mask_tokenizer.batch_decode(outputs, skip_special_tokens=False)
def extract_fills(texts):
# remove <pad> from beginning of each text
texts = [x.replace("<pad>", "").replace("</s>", "").strip() for x in texts]
# return the text in between each matched mask token
extracted_fills = [pattern.split(x)[1:-1] for x in texts]
# remove whitespace around each fill
extracted_fills = [[y.strip() for y in x] for x in extracted_fills]
return extracted_fills
def apply_extracted_fills(masked_texts, extracted_fills):
# split masked text into tokens, only splitting on spaces (not newlines)
tokens = [x.split(' ') for x in masked_texts]
n_expected = count_masks(masked_texts)
# replace each mask token with the corresponding fill
for idx, (text, fills, n) in enumerate(zip(tokens, extracted_fills, n_expected)):
if len(fills) < n:
tokens[idx] = []
else:
for fill_idx in range(n):
text[text.index(f"<extra_id_{fill_idx}>")] = fills[fill_idx]
# join tokens back into text
texts = [" ".join(x) for x in tokens]
return texts
def perturb_texts_(args, mask_model, mask_tokenizer, texts, ceil_pct=False):
span_length = args.span_length
pct = args.pct_words_masked
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts]
raw_fills = replace_masks(args, mask_model, mask_tokenizer, masked_texts)
extracted_fills = extract_fills(raw_fills)
perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
# Handle the fact that sometimes the model doesn't generate the right number of fills and we have to try again
attempts = 1
while '' in perturbed_texts:
idxs = [idx for idx, x in enumerate(perturbed_texts) if x == '']
print(f'WARNING: {len(idxs)} texts have no fills. Trying again [attempt {attempts}].')
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for idx, x in enumerate(texts) if idx in idxs]
raw_fills = replace_masks(args, mask_model, mask_tokenizer, masked_texts)
extracted_fills = extract_fills(raw_fills)
new_perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
for idx, x in zip(idxs, new_perturbed_texts):
perturbed_texts[idx] = x
attempts += 1
return perturbed_texts
def perturb_texts(args, mask_model, mask_tokenizer, texts, ceil_pct=False):
chunk_size = 10
outputs = []
for i in range(0, len(texts), chunk_size):
outputs.extend(perturb_texts_(args, mask_model, mask_tokenizer, texts[i:i + chunk_size], ceil_pct=ceil_pct))
return outputs
# Get the log likelihood of each text under the base_model
def get_ll(args, scoring_model, scoring_tokenizer, text):
with torch.no_grad():
tokenized = scoring_tokenizer(text, return_tensors="pt", return_token_type_ids=False).to(args.device)
labels = tokenized.input_ids
return -scoring_model(**tokenized, labels=labels).loss.item()
def get_lls(args, scoring_model, scoring_tokenizer, texts):
return [get_ll(args, scoring_model, scoring_tokenizer, text) for text in texts]
def generate_perturbs(args):
n_perturbations = args.n_perturbations
name = f'perturbation_{n_perturbations}'
# load model
mask_model = load_mask_model(args.mask_filling_model_name, args.device, args.cache_dir)
mask_model.eval()
try:
n_positions = mask_model.config.n_positions
except AttributeError:
n_positions = 512
mask_tokenizer = load_mask_tokenizer(args.mask_filling_model_name, n_positions, args.cache_dir)
# load data
data = load_data(args.dataset_file)
n_samples = len(data["sampled"])
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# generate perturb samples
perturbs = []
for idx in tqdm.tqdm(range(n_samples), desc=f"Perturb text"):
original_text = data["original"][idx]
sampled_text = data["sampled"][idx]
# perturb
p_sampled_text = perturb_texts(args, mask_model, mask_tokenizer, [sampled_text for _ in range(n_perturbations)])
p_original_text = perturb_texts(args, mask_model, mask_tokenizer, [original_text for _ in range(n_perturbations)])
assert len(p_sampled_text) == n_perturbations, f"Expected {n_perturbations} perturbed samples, got {len(p_sampled_text)}"
assert len(p_original_text) == n_perturbations, f"Expected {n_perturbations} perturbed samples, got {len(p_original_text)}"
# result
perturbs.append({
"original": original_text,
"sampled": sampled_text,
"perturbed_sampled": p_sampled_text,
"perturbed_original": p_original_text
})
save_data(f'{args.dataset_file}.{args.mask_filling_model_name}.{name}', args, perturbs)
def experiment(args):
n_perturbations = args.n_perturbations
name = f'perturbation_{n_perturbations}'
perturb_file = f'{args.dataset_file}.{args.mask_filling_model_name}.{name}.raw_data.json'
if os.path.exists(perturb_file):
print(f'Use existing perturbation file: {perturb_file}')
else:
generate_perturbs(args)
# load model
scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir)
scoring_model = load_model(args.scoring_model_name, 'cpu', args.cache_dir)
scoring_model.eval()
scoring_model.to(args.device)
# load data
data = load_data(f'{args.dataset_file}.{args.mask_filling_model_name}.{name}')
n_samples = len(data)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Evaluate
results = data
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
original_text = results[idx]["original"]
sampled_text = results[idx]["sampled"]
perturbed_original = results[idx]["perturbed_original"]
perturbed_sampled = results[idx]["perturbed_sampled"]
# original text
original_ll = get_ll(args, scoring_model, scoring_tokenizer, original_text)
p_original_ll = get_lls(args, scoring_model, scoring_tokenizer, perturbed_original)
# sampled text
sampled_ll = get_ll(args, scoring_model, scoring_tokenizer, sampled_text)
p_sampled_ll = get_lls(args, scoring_model, scoring_tokenizer, perturbed_sampled)
# result
results[idx]["original_ll"] = original_ll
results[idx]["sampled_ll"] = sampled_ll
results[idx]["all_perturbed_sampled_ll"] = p_sampled_ll
results[idx]["all_perturbed_original_ll"] = p_original_ll
results[idx]["perturbed_sampled_ll"] = np.mean(p_sampled_ll)
results[idx]["perturbed_original_ll"] = np.mean(p_original_ll)
results[idx]["perturbed_sampled_ll_std"] = np.std(p_sampled_ll) if len(p_sampled_ll) > 1 else 1
results[idx]["perturbed_original_ll_std"] = np.std(p_original_ll) if len(p_original_ll) > 1 else 1
# compute diffs with perturbed
predictions = {'real': [], 'samples': []}
for res in results:
if res['perturbed_original_ll_std'] == 0:
res['perturbed_original_ll_std'] = 1
print("WARNING: std of perturbed original is 0, setting to 1")
print(f"Number of unique perturbed original texts: {len(set(res['perturbed_original']))}")
print(f"Original text: {res['original']}")
if res['perturbed_sampled_ll_std'] == 0:
res['perturbed_sampled_ll_std'] = 1
print("WARNING: std of perturbed sampled is 0, setting to 1")
print(f"Number of unique perturbed sampled texts: {len(set(res['perturbed_sampled']))}")
print(f"Sampled text: {res['sampled']}")
predictions['real'].append((res['original_ll'] - res['perturbed_original_ll']) / res['perturbed_original_ll_std'])
predictions['samples'].append((res['sampled_ll'] - res['perturbed_sampled_ll']) / res['perturbed_sampled_ll_std'])
print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}")
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
# results
results_file = f'{args.output_file}.{name}.json'
results = {
'name': name,
'info': {
'pct_words_masked': args.pct_words_masked,
'span_length': args.span_length,
'n_perturbations': args.n_perturbations,
'n_samples': n_samples,
},
'predictions': predictions,
'raw_results': results,
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
with open(results_file, 'w') as fout:
json.dump(results, fout)
print(f'Results written into {results_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2")
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2")
parser.add_argument('--pct_words_masked', type=float, default=0.3) # pct masked is actually pct_words_masked * (span_length / (span_length + 2 * buffer_size))
parser.add_argument('--mask_top_p', type=float, default=1.0)
parser.add_argument('--span_length', type=int, default=2)
parser.add_argument('--n_perturbations', type=int, default=10)
parser.add_argument('--scoring_model_name', type=str, default="gpt2")
parser.add_argument('--mask_filling_model_name', type=str, default="t5-small")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--cache_dir', type=str, default="../cache")
args = parser.parse_args()
experiment(args)