fast_detect_gpt / dna_gpt.py
azra-kml's picture
Upload 30 files
aefc9ef verified
raw
history blame
9.58 kB
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os.path
import numpy as np
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import re
import torch
import tqdm
import argparse
import json
from data_builder import load_data, save_data
from metrics import get_roc_metrics, get_precision_recall_metrics
from model import load_tokenizer, load_model, get_model_fullname, from_pretrained
from data_builder import load_data
from model import load_tokenizer, load_model
from metrics import get_roc_metrics, get_precision_recall_metrics
import custom_datasets
class PrefixSampler:
def __init__(self, args):
self.args = args
self.base_tokenizer = load_tokenizer(args.base_model_name, args.dataset, args.cache_dir)
self.base_model = load_model(args.base_model_name, args.device, args.cache_dir)
def _sample_from_model(self, texts, min_words=55, truncate_ratio=0.5):
# encode each text as a list of token ids
if self.args.dataset == 'pubmed':
pubmed_sep = ' Answer:'
texts = [t[:t.index(pubmed_sep) + len(pubmed_sep)] for t in texts]
all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True).to(self.args.device)
else:
texts = [t.split(' ') for t in texts]
texts = [' '.join(t[: int(len(t) * truncate_ratio)]) for t in texts]
all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True).to(self.args.device)
self.base_model.eval()
decoded = ['' for _ in range(len(texts))]
# sample from the model until we get a sample with at least min_words words for each example
# this is an inefficient way to do this (since we regenerate for all inputs if just one is too short), but it works
tries = 0
m = 0
while m < min_words:
if tries != 0:
print()
print(f"min words: {m}, needed {min_words}, regenerating (try {tries})")
sampling_kwargs = {'temperature': self.args.temperature}
if self.args.do_top_p:
sampling_kwargs['top_p'] = self.args.top_p
elif self.args.do_top_k:
sampling_kwargs['top_k'] = self.args.top_k
min_length = 50 if self.args.dataset in ['pubmed'] else 150
outputs = self.base_model.generate(**all_encoded, min_length=min_length, max_length=200, do_sample=True,
**sampling_kwargs, pad_token_id=self.base_tokenizer.eos_token_id,
eos_token_id=self.base_tokenizer.eos_token_id)
decoded = self.base_tokenizer.batch_decode(outputs, skip_special_tokens=True)
m = min(len(x.split()) for x in decoded)
tries += 1
return decoded
def generate_samples(self, raw_data, batch_size):
# trim to shorter length
def _trim_to_shorter_length(texta, textb):
# truncate to shorter of o and s
shorter_length = min(len(texta.split(' ')), len(textb.split(' ')))
texta = ' '.join(texta.split(' ')[:shorter_length])
textb = ' '.join(textb.split(' ')[:shorter_length])
return texta, textb
def _truncate_to_substring(text, substring, idx_occurrence):
# truncate everything after the idx_occurrence occurrence of substring
assert idx_occurrence > 0, 'idx_occurrence must be > 0'
idx = -1
for _ in range(idx_occurrence):
idx = text.find(substring, idx + 1)
if idx == -1:
return text
return text[:idx]
data = {
"original": [],
"sampled": [],
}
assert len(raw_data) % batch_size == 0
for batch in range(len(raw_data) // batch_size):
print('Generating samples for batch', batch, 'of', len(raw_data) // batch_size)
original_text = raw_data[batch * batch_size:(batch + 1) * batch_size]
sampled_text = self._sample_from_model(original_text, min_words=30 if self.args.dataset in ['pubmed'] else 55, truncate_ratio=self.args.truncate_ratio)
for o, s in zip(original_text, sampled_text):
if self.args.dataset == 'pubmed':
s = _truncate_to_substring(s, 'Question:', 2)
o = o.replace(custom_datasets.SEPARATOR, ' ')
o, s = _trim_to_shorter_length(o, s)
# add to the data
data["original"].append(o)
data["sampled"].append(s)
return data
def get_likelihood(logits, labels, pad_index):
labels = labels.unsqueeze(-1) if labels.ndim == logits.ndim - 1 else labels
lprobs = torch.log_softmax(logits, dim=-1)
log_likelihood = lprobs.gather(dim=-1, index=labels)
mask = labels != pad_index
log_likelihood = (log_likelihood * mask).sum(dim=1) / mask.sum(dim=1)
return log_likelihood.squeeze(-1)
def get_log_prob(sampler, text):
tokenized = sampler.base_tokenizer(text, return_tensors="pt", padding=True).to(sampler.args.device)
labels = tokenized.input_ids[:, 1:]
with torch.no_grad():
logits_score = sampler.base_model(**tokenized).logits[:, :-1]
return get_likelihood(logits_score, labels, sampler.base_tokenizer.pad_token_id)
def get_log_probs(sampler, texts):
batch_size = sampler.args.batch_size
batch_lprobs = []
for batch in range(len(texts) // batch_size):
tokenized = sampler.base_tokenizer(texts[batch * batch_size:(batch + 1) * batch_size], return_tensors="pt", padding=True).to(sampler.args.device)
labels = tokenized.input_ids[:, 1:]
with torch.no_grad():
logits_score = sampler.base_model(**tokenized).logits[:, :-1]
lprobs = get_likelihood(logits_score, labels, sampler.base_tokenizer.pad_token_id)
batch_lprobs.append(lprobs)
return torch.cat(batch_lprobs, dim=0)
def get_regen_samples(sampler, text):
data = [text] * sampler.args.regen_number
data = sampler.generate_samples(data, batch_size=sampler.args.batch_size)
return data['sampled']
def get_dna_gpt(sampler, text):
lprob = get_log_prob(sampler, text)
regens = get_regen_samples(sampler, text)
lprob_regens = get_log_probs(sampler, regens)
wscore = lprob[0] - lprob_regens.mean()
return wscore.item()
def experiment(args):
sampler = PrefixSampler(args)
# load data
data = load_data(args.dataset_file)
n_samples = len(data["sampled"])
# evaluate criterion
name = "dna_gpt"
criterion_fn = get_dna_gpt
torch.manual_seed(args.seed)
np.random.seed(args.seed)
results = []
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
original_text = data["original"][idx]
sampled_text = data["sampled"][idx]
# original text
original_crit = criterion_fn(sampler, original_text)
# sampled text
sampled_crit = criterion_fn(sampler, sampled_text)
# result
results.append({"original": original_text,
"original_crit": original_crit,
"sampled": sampled_text,
"sampled_crit": sampled_crit})
# compute prediction scores for real/sampled passages
predictions = {'real': [x["original_crit"] for x in results],
'samples': [x["sampled_crit"] for x in results]}
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
# results
results_file = f'{args.output_file}.{name}.json'
results = { 'name': f'{name}_threshold',
'info': {'n_samples': n_samples},
'predictions': predictions,
'raw_results': results,
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr},
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r},
'loss': 1 - pr_auc}
with open(results_file, 'w') as fout:
json.dump(results, fout)
print(f'Results written into {results_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_test/results/pubmed_davinci")
parser.add_argument('--dataset', type=str, default="pubmed")
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/pubmed_davinci")
parser.add_argument('--truncate_ratio', type=float, default=0.5)
parser.add_argument('--regen_number', type=int, default=10)
parser.add_argument('--base_model_name', type=str, default="gpt2")
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--do_top_k', action='store_true')
parser.add_argument('--top_k', type=int, default=40)
parser.add_argument('--do_top_p', action='store_true')
parser.add_argument('--top_p', type=float, default=0.96)
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--cache_dir', type=str, default="../cache")
args = parser.parse_args()
experiment(args)