Aziz Alto commited on
Commit
dcda531
1 Parent(s): 9517dd2

Upload example1.txt

Browse files
Files changed (1) hide show
  1. examples/example1.txt +54 -0
examples/example1.txt ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ World Population Dataset
3
+
4
+ Monitoring city population (per country) with upper/lower bounds intervals
5
+ """
6
+
7
+ # -- filter on arbitrarily selected countries
8
+ countries = df.sample(5)['country'].values
9
+ # countries = ["Japan", "Argentina", "Greece", "Thailand", "Peru", "Saudi Arabia", "Jordan" ,"United States"];
10
+
11
+ # -- add a new column to df (mean or std)
12
+ df = df.groupby("country", as_index=False).apply(
13
+ lambda d: d.assign(city_population_avg=d["population"].std().astype(int))
14
+ );
15
+ # -- measure members distance from LCL
16
+ df = df.groupby("country", as_index=False).apply(
17
+ lambda d: d.assign(upper_bound=abs((d["city_population_avg"]*1.1).astype(int)+d["city_population_avg"]))
18
+ );
19
+ df = df.groupby("country", as_index=False).apply(
20
+ lambda d: d.assign(lower_bound=abs((d["city_population_avg"]*1.1).astype(int)-d["city_population_avg"]))
21
+ );
22
+
23
+
24
+ for country in countries:
25
+
26
+ _df = df[df['country']==country]
27
+ b = px.bar(_df, x="city", y="population", facet_col="country", facet_col_wrap=4)
28
+
29
+ s = px.line(
30
+ _df, x="city", y="city_population_avg", facet_col="country", facet_col_wrap=4,
31
+ color="city_population_avg"
32
+ ).update_traces(line_color="orange")
33
+ b.add_traces(s.data)
34
+
35
+ u = px.line(
36
+ _df, x="city", y="upper_bound", facet_col="country", facet_col_wrap=4,
37
+ color="upper_bound"
38
+ ).update_traces(line_color="green")
39
+ b.add_traces(u.data)
40
+
41
+ l = px.line(
42
+ _df, x="city", y="lower_bound", facet_col="country", facet_col_wrap=4,
43
+ color="lower_bound"
44
+ ).update_traces(line_color="red")
45
+ b.add_traces(l.data)
46
+
47
+ st.markdown(f"# {country}")
48
+ col1, col2 = st.columns(2)
49
+ col1.plotly_chart(b)
50
+ col2.write(_df)
51
+
52
+ below_control = _df[_df['population']<_df['lower_bound']].shape[0]
53
+ msg = f"{round((below_control/_df.shape[0]), 2)*100}% of the cities are below the `lower_bound` of population control"
54
+ st.markdown(f"> ### {msg}")