Upload 6 files
Browse filesdeploying on cloud
- .gitignore +1 -0
- Pipfile +11 -0
- app.py +141 -0
- image.png +0 -0
- project_workflow.png +0 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
Pipfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
|
8 |
+
[dev-packages]
|
9 |
+
|
10 |
+
[requires]
|
11 |
+
python_version = "3.11"
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from langchain_core.runnables import RunnablePassthrough
|
5 |
+
from langchain_community.utilities import SQLDatabase
|
6 |
+
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
st.set_page_config(page_title="Chat with SQL", page_icon=":speech_ballon")
|
13 |
+
st.title("Chat with my MySQL")
|
14 |
+
|
15 |
+
# session state variable
|
16 |
+
if "chat_history" not in st.session_state:
|
17 |
+
st.session_state.chat_history = [AIMessage(content="Hello! I'm a SQL assistant. ASk me anything about your database."),]
|
18 |
+
|
19 |
+
|
20 |
+
def init_database(user: str, password: str, host: str, port: str, database: str) -> SQLDatabase:
|
21 |
+
# connceting to mysql db using mysql-connector-python driver
|
22 |
+
db_uri = f"mysql+mysqlconnector://{user}:{password}@{host}:{port}/{database}"
|
23 |
+
return SQLDatabase.from_uri(db_uri)
|
24 |
+
|
25 |
+
|
26 |
+
def get_sql_chain(db):
|
27 |
+
template = """
|
28 |
+
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
29 |
+
Based on the table schema below, write a SQL query that would answer the user's question. Take the conversation history into account.
|
30 |
+
|
31 |
+
<SCHEMA>{schema}</SCHEMA>
|
32 |
+
|
33 |
+
Conversation History: {chat_history}
|
34 |
+
|
35 |
+
Write only the SQL query and nothing else. Do not wrap the SQL query in any other text, not even backticks.
|
36 |
+
|
37 |
+
For example(few shot learning):
|
38 |
+
Question: which 3 artists have the most tracks?
|
39 |
+
SQL Query: SELECT ArtistId, COUNT(*) as track_count FROM Track GROUP BY ArtistId ORDER BY track_count DESC LIMIT 3;
|
40 |
+
Question: Name 10 artists
|
41 |
+
SQL Query: SELECT Name FROM Artist LIMIT 10;
|
42 |
+
|
43 |
+
Your turn:
|
44 |
+
|
45 |
+
Question: {question}
|
46 |
+
SQL Query:
|
47 |
+
"""
|
48 |
+
|
49 |
+
prompt = ChatPromptTemplate.from_template(template)
|
50 |
+
llm = ChatOpenAI(model="gpt-4")
|
51 |
+
|
52 |
+
def get_schema(_):
|
53 |
+
return db.get_table_info()
|
54 |
+
|
55 |
+
sql_chain = RunnablePassthrough.assign(schema=get_schema) | prompt | llm | StrOutputParser()
|
56 |
+
|
57 |
+
return sql_chain
|
58 |
+
|
59 |
+
|
60 |
+
def get_response(user_query: str, db: SQLDatabase, chat_history: list):
|
61 |
+
sql_chain = get_sql_chain(db)
|
62 |
+
template = """
|
63 |
+
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
64 |
+
Based on the table schema below, question, sql query, and sql response, write a natural language response.
|
65 |
+
<SCHEMA>{schema}</SCHEMA>
|
66 |
+
|
67 |
+
Conversation History: {chat_history}
|
68 |
+
SQL Query: <SQL>{query}</SQL>
|
69 |
+
User Question: {question}
|
70 |
+
SQL Response: {response}
|
71 |
+
"""
|
72 |
+
prompt = ChatPromptTemplate.from_template(template)
|
73 |
+
llm = ChatOpenAI()
|
74 |
+
|
75 |
+
response_chain = (
|
76 |
+
RunnablePassthrough.assign(query=sql_chain)
|
77 |
+
.assign(schema=lambda _: db.get_table_info(),
|
78 |
+
# response=lambda vars: print("variables: ", vars),
|
79 |
+
response=lambda vars: db.run(vars["query"]),
|
80 |
+
)
|
81 |
+
| prompt
|
82 |
+
| llm
|
83 |
+
| StrOutputParser()
|
84 |
+
)
|
85 |
+
|
86 |
+
return response_chain.invoke({"question": user_query, "chat_history": chat_history})
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
with st.sidebar:
|
91 |
+
st.subheader("Settings")
|
92 |
+
st.write("This is a simple chat application using LLM and MySQL")
|
93 |
+
st.write("Connect to the databse and satrt chatting.")
|
94 |
+
|
95 |
+
st.text_input("Host", value="localhost", key="Host")
|
96 |
+
st.text_input("Port", value="3306", key="Port")
|
97 |
+
st.text_input("User", value="root", key="User")
|
98 |
+
st.text_input("Password", type="password", value="admin", key="Password")
|
99 |
+
st.text_input("Database", value="Chinook", key="Database")
|
100 |
+
|
101 |
+
if st.button("Connect"):
|
102 |
+
with st.spinner("Connecting to database..."):
|
103 |
+
db = init_database(
|
104 |
+
st.session_state["User"],
|
105 |
+
st.session_state["Password"],
|
106 |
+
st.session_state["Host"],
|
107 |
+
st.session_state["Port"],
|
108 |
+
st.session_state["Database"],
|
109 |
+
)
|
110 |
+
st.session_state.db = db
|
111 |
+
st.success("Connected to database!")
|
112 |
+
|
113 |
+
# printing out messages/ chat
|
114 |
+
for message in st.session_state.chat_history:
|
115 |
+
if isinstance(message, AIMessage):
|
116 |
+
with st.chat_message("AI"):
|
117 |
+
st.markdown(message.content)
|
118 |
+
elif isinstance(message, HumanMessage):
|
119 |
+
with st.chat_message("Human"):
|
120 |
+
st.markdown(message.content)
|
121 |
+
|
122 |
+
|
123 |
+
user_query = st.chat_input("Type a message...")
|
124 |
+
if user_query is not None and user_query.strip() != "":
|
125 |
+
# adding to chat history
|
126 |
+
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
127 |
+
|
128 |
+
# displaying user query// with manages the lifecycle of an object
|
129 |
+
with st.chat_message("Human"):
|
130 |
+
st.markdown(user_query)
|
131 |
+
|
132 |
+
with st.chat_message("AI"):
|
133 |
+
response = get_response(user_query, st.session_state.db, st.session_state.chat_history)
|
134 |
+
# sql_chain = get_sql_chain(st.session_state.db)
|
135 |
+
# response = sql_chain.invoke({
|
136 |
+
# "chat_history": st.session_state.chat_history, # scheam has already been populated in func getsqlchain
|
137 |
+
# "question" : user_query
|
138 |
+
# })
|
139 |
+
st.markdown(response)
|
140 |
+
|
141 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|
image.png
ADDED
![]() |
project_workflow.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
langchain-openai
|
4 |
+
langchain_community
|
5 |
+
langchain-groq
|
6 |
+
mysql-connector-python
|
7 |
+
mysql
|
8 |
+
python-dotenv
|