Tifinagh-OCR / app.py
ayymen's picture
Make text box bigger.
4bd60c6
raw
history blame
2.01 kB
import os
from doctr.io import DocumentFile
from doctr.models import ocr_predictor, from_hub
import gradio as gr
os.environ['USE_TORCH'] = '1'
reco_model_zgh = from_hub('ayymen/crnn_mobilenet_v3_large_zgh')
predictor_zgh = ocr_predictor(reco_arch=reco_model_zgh, pretrained=True)
reco_model = from_hub('ayymen/crnn_mobilenet_v3_large_tifinagh')
predictor = ocr_predictor(reco_arch=reco_model, pretrained=True)
title = "Tifinagh OCR"
description = """Upload an image to get the OCR results!
Thanks to @iseddik for the data!"""
def ocr(img, script):
img.save("out.jpg")
doc = DocumentFile.from_images("out.jpg")
output = predictor_zgh(doc) if script == "Tifinagh-IRCAM" else predictor(doc)
res = ""
for obj in output.pages:
for obj1 in obj.blocks:
for obj2 in obj1.lines:
for obj3 in obj2.words:
res = res + " " + obj3.value
res = res + "\n"
res = res + "\n"
_output_name = "RESULT_OCR.txt"
open(_output_name, 'w', encoding="utf-8").close() # clear file
with open(_output_name, "w", encoding="utf-8", errors="ignore") as f:
f.write(res)
print("Writing into file")
return res, _output_name
demo = gr.Interface(fn=ocr,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(choices=['Tifinagh-IRCAM', 'Tifinagh'], label="Script", value="Tifinagh-IRCAM")
],
outputs=[
gr.Textbox(lines=20, label="Full Text"),
gr.File(label="Download OCR Results")
],
title=title,
description=description,
examples=[
["Examples/3.jpg", "Tifinagh-IRCAM"],
["Examples/2.jpg", "Tifinagh-IRCAM"],
["Examples/1.jpg", "Tifinagh-IRCAM"]
]
)
demo.launch(debug=True)