|
import numpy as np |
|
import librosa |
|
import mir_eval |
|
import torch |
|
import os |
|
|
|
idx2chord = ['C', 'C:min', 'C#', 'C#:min', 'D', 'D:min', 'D#', 'D#:min', 'E', 'E:min', 'F', 'F:min', 'F#', |
|
'F#:min', 'G', 'G:min', 'G#', 'G#:min', 'A', 'A:min', 'A#', 'A#:min', 'B', 'B:min', 'N'] |
|
|
|
root_list = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] |
|
quality_list = ['min', 'maj', 'dim', 'aug', 'min6', 'maj6', 'min7', 'minmaj7', 'maj7', '7', 'dim7', 'hdim7', 'sus2', 'sus4'] |
|
|
|
def idx2voca_chord(): |
|
idx2voca_chord = {} |
|
idx2voca_chord[169] = 'N' |
|
idx2voca_chord[168] = 'X' |
|
for i in range(168): |
|
root = i // 14 |
|
root = root_list[root] |
|
quality = i % 14 |
|
quality = quality_list[quality] |
|
if i % 14 != 1: |
|
chord = root + ':' + quality |
|
else: |
|
chord = root |
|
idx2voca_chord[i] = chord |
|
return idx2voca_chord |
|
|
|
def audio_file_to_features(audio_file, config): |
|
original_wav, sr = librosa.load(audio_file, sr=config.mp3['song_hz'], mono=True) |
|
currunt_sec_hz = 0 |
|
while len(original_wav) > currunt_sec_hz + config.mp3['song_hz'] * config.mp3['inst_len']: |
|
start_idx = int(currunt_sec_hz) |
|
end_idx = int(currunt_sec_hz + config.mp3['song_hz'] * config.mp3['inst_len']) |
|
tmp = librosa.cqt(original_wav[start_idx:end_idx], sr=sr, n_bins=config.feature['n_bins'], bins_per_octave=config.feature['bins_per_octave'], hop_length=config.feature['hop_length']) |
|
if start_idx == 0: |
|
feature = tmp |
|
else: |
|
feature = np.concatenate((feature, tmp), axis=1) |
|
currunt_sec_hz = end_idx |
|
tmp = librosa.cqt(original_wav[currunt_sec_hz:], sr=sr, n_bins=config.feature['n_bins'], bins_per_octave=config.feature['bins_per_octave'], hop_length=config.feature['hop_length']) |
|
feature = np.concatenate((feature, tmp), axis=1) |
|
feature = np.log(np.abs(feature) + 1e-6) |
|
feature_per_second = config.mp3['inst_len'] / config.model['timestep'] |
|
song_length_second = len(original_wav)/config.mp3['song_hz'] |
|
return feature, feature_per_second, song_length_second |
|
|
|
|
|
def get_audio_paths(audio_dir): |
|
return [os.path.join(root, fname) for (root, dir_names, file_names) in os.walk(audio_dir, followlinks=True) |
|
for fname in file_names if (fname.lower().endswith('.wav') or fname.lower().endswith('.mp3'))] |
|
|
|
def get_lab_paths(lab_dir): |
|
return [os.path.join(root, fname) for (root, dir_names, file_names) in os.walk(lab_dir, followlinks=True) |
|
for fname in file_names if (fname.lower().endswith('.lab'))] |
|
|
|
|
|
class metrics(): |
|
def __init__(self): |
|
super(metrics, self).__init__() |
|
self.score_metrics = ['root', 'thirds', 'triads', 'sevenths', 'tetrads', 'majmin', 'mirex'] |
|
self.score_list_dict = dict() |
|
for i in self.score_metrics: |
|
self.score_list_dict[i] = list() |
|
self.average_score = dict() |
|
|
|
def score(self, metric, gt_path, est_path): |
|
if metric == 'root': |
|
score = self.root_score(gt_path,est_path) |
|
elif metric == 'thirds': |
|
score = self.thirds_score(gt_path,est_path) |
|
elif metric == 'triads': |
|
score = self.triads_score(gt_path,est_path) |
|
elif metric == 'sevenths': |
|
score = self.sevenths_score(gt_path,est_path) |
|
elif metric == 'tetrads': |
|
score = self.tetrads_score(gt_path,est_path) |
|
elif metric == 'majmin': |
|
score = self.majmin_score(gt_path,est_path) |
|
elif metric == 'mirex': |
|
score = self.mirex_score(gt_path,est_path) |
|
else: |
|
raise NotImplementedError |
|
return score |
|
|
|
def root_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.root(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def thirds_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.thirds(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def triads_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.triads(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def sevenths_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.sevenths(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def tetrads_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.tetrads(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def majmin_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.majmin(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def mirex_score(self, gt_path, est_path): |
|
(ref_intervals, ref_labels) = mir_eval.io.load_labeled_intervals(gt_path) |
|
ref_labels = lab_file_error_modify(ref_labels) |
|
(est_intervals, est_labels) = mir_eval.io.load_labeled_intervals(est_path) |
|
est_intervals, est_labels = mir_eval.util.adjust_intervals(est_intervals, est_labels, ref_intervals.min(), |
|
ref_intervals.max(), mir_eval.chord.NO_CHORD, |
|
mir_eval.chord.NO_CHORD) |
|
(intervals, ref_labels, est_labels) = mir_eval.util.merge_labeled_intervals(ref_intervals, ref_labels, |
|
est_intervals, est_labels) |
|
durations = mir_eval.util.intervals_to_durations(intervals) |
|
comparisons = mir_eval.chord.mirex(ref_labels, est_labels) |
|
score = mir_eval.chord.weighted_accuracy(comparisons, durations) |
|
return score |
|
|
|
def lab_file_error_modify(ref_labels): |
|
for i in range(len(ref_labels)): |
|
if ref_labels[i][-2:] == ':4': |
|
ref_labels[i] = ref_labels[i].replace(':4', ':sus4') |
|
elif ref_labels[i][-2:] == ':6': |
|
ref_labels[i] = ref_labels[i].replace(':6', ':maj6') |
|
elif ref_labels[i][-4:] == ':6/2': |
|
ref_labels[i] = ref_labels[i].replace(':6/2', ':maj6/2') |
|
elif ref_labels[i] == 'Emin/4': |
|
ref_labels[i] = 'E:min/4' |
|
elif ref_labels[i] == 'A7/3': |
|
ref_labels[i] = 'A:7/3' |
|
elif ref_labels[i] == 'Bb7/3': |
|
ref_labels[i] = 'Bb:7/3' |
|
elif ref_labels[i] == 'Bb7/5': |
|
ref_labels[i] = 'Bb:7/5' |
|
elif ref_labels[i].find(':') == -1: |
|
if ref_labels[i].find('min') != -1: |
|
ref_labels[i] = ref_labels[i][:ref_labels[i].find('min')] + ':' + ref_labels[i][ref_labels[i].find('min'):] |
|
return ref_labels |
|
|
|
def root_majmin_score_calculation(valid_dataset, config, mean, std, device, model, model_type, verbose=False): |
|
valid_song_names = valid_dataset.song_names |
|
paths = valid_dataset.preprocessor.get_all_files() |
|
|
|
metrics_ = metrics() |
|
song_length_list = list() |
|
for path in paths: |
|
song_name, lab_file_path, mp3_file_path, _ = path |
|
if not song_name in valid_song_names: |
|
continue |
|
try: |
|
n_timestep = config.model['timestep'] |
|
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) |
|
feature = feature.T |
|
feature = (feature - mean) / std |
|
time_unit = feature_per_second |
|
|
|
num_pad = n_timestep - (feature.shape[0] % n_timestep) |
|
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) |
|
num_instance = feature.shape[0] // n_timestep |
|
|
|
start_time = 0.0 |
|
lines = [] |
|
with torch.no_grad(): |
|
model.eval() |
|
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) |
|
for t in range(num_instance): |
|
if model_type == 'btc': |
|
encoder_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :]) |
|
prediction, _ = model.output_layer(encoder_output) |
|
prediction = prediction.squeeze() |
|
elif model_type == 'cnn' or model_type =='crnn': |
|
prediction, _, _, _ = model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) |
|
for i in range(n_timestep): |
|
if t == 0 and i == 0: |
|
prev_chord = prediction[i].item() |
|
continue |
|
if prediction[i].item() != prev_chord: |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) |
|
start_time = time_unit * (n_timestep * t + i) |
|
prev_chord = prediction[i].item() |
|
if t == num_instance - 1 and i + num_pad == n_timestep: |
|
if start_time != time_unit * (n_timestep * t + i): |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) |
|
break |
|
pid = os.getpid() |
|
tmp_path = 'tmp_' + str(pid) + '.lab' |
|
with open(tmp_path, 'w') as f: |
|
for line in lines: |
|
f.write(line) |
|
|
|
root_majmin = ['root', 'majmin'] |
|
for m in root_majmin: |
|
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) |
|
song_length_list.append(song_length_second) |
|
if verbose: |
|
for m in root_majmin: |
|
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) |
|
except: |
|
print('song name %s\' lab file error' % song_name) |
|
|
|
tmp = song_length_list / np.sum(song_length_list) |
|
for m in root_majmin: |
|
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) |
|
|
|
return metrics_.score_list_dict, song_length_list, metrics_.average_score |
|
|
|
def root_majmin_score_calculation_crf(valid_dataset, config, mean, std, device, pre_model, model, model_type, verbose=False): |
|
valid_song_names = valid_dataset.song_names |
|
paths = valid_dataset.preprocessor.get_all_files() |
|
|
|
metrics_ = metrics() |
|
song_length_list = list() |
|
for path in paths: |
|
song_name, lab_file_path, mp3_file_path, _ = path |
|
if not song_name in valid_song_names: |
|
continue |
|
try: |
|
n_timestep = config.model['timestep'] |
|
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) |
|
feature = feature.T |
|
feature = (feature - mean) / std |
|
time_unit = feature_per_second |
|
|
|
num_pad = n_timestep - (feature.shape[0] % n_timestep) |
|
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) |
|
num_instance = feature.shape[0] // n_timestep |
|
|
|
start_time = 0.0 |
|
lines = [] |
|
with torch.no_grad(): |
|
model.eval() |
|
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) |
|
for t in range(num_instance): |
|
if (model_type == 'cnn') or (model_type == 'crnn') or (model_type == 'btc'): |
|
logits = pre_model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) |
|
prediction, _ = model(logits, torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) |
|
else: |
|
raise NotImplementedError |
|
for i in range(n_timestep): |
|
if t == 0 and i == 0: |
|
prev_chord = prediction[i].item() |
|
continue |
|
if prediction[i].item() != prev_chord: |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) |
|
start_time = time_unit * (n_timestep * t + i) |
|
prev_chord = prediction[i].item() |
|
if t == num_instance - 1 and i + num_pad == n_timestep: |
|
if start_time != time_unit * (n_timestep * t + i): |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2chord[prev_chord])) |
|
break |
|
pid = os.getpid() |
|
tmp_path = 'tmp_' + str(pid) + '.lab' |
|
with open(tmp_path, 'w') as f: |
|
for line in lines: |
|
f.write(line) |
|
|
|
root_majmin = ['root', 'majmin'] |
|
for m in root_majmin: |
|
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) |
|
song_length_list.append(song_length_second) |
|
if verbose: |
|
for m in root_majmin: |
|
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) |
|
except: |
|
print('song name %s\' lab file error' % song_name) |
|
|
|
tmp = song_length_list / np.sum(song_length_list) |
|
for m in root_majmin: |
|
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) |
|
|
|
return metrics_.score_list_dict, song_length_list, metrics_.average_score |
|
|
|
|
|
def large_voca_score_calculation(valid_dataset, config, mean, std, device, model, model_type, verbose=False): |
|
idx2voca = idx2voca_chord() |
|
valid_song_names = valid_dataset.song_names |
|
paths = valid_dataset.preprocessor.get_all_files() |
|
|
|
metrics_ = metrics() |
|
song_length_list = list() |
|
for path in paths: |
|
song_name, lab_file_path, mp3_file_path, _ = path |
|
if not song_name in valid_song_names: |
|
continue |
|
try: |
|
n_timestep = config.model['timestep'] |
|
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) |
|
feature = feature.T |
|
feature = (feature - mean) / std |
|
time_unit = feature_per_second |
|
|
|
num_pad = n_timestep - (feature.shape[0] % n_timestep) |
|
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) |
|
num_instance = feature.shape[0] // n_timestep |
|
|
|
start_time = 0.0 |
|
lines = [] |
|
with torch.no_grad(): |
|
model.eval() |
|
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) |
|
for t in range(num_instance): |
|
if model_type == 'btc': |
|
encoder_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :]) |
|
prediction, _ = model.output_layer(encoder_output) |
|
prediction = prediction.squeeze() |
|
elif model_type == 'cnn' or model_type =='crnn': |
|
prediction, _, _, _ = model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) |
|
for i in range(n_timestep): |
|
if t == 0 and i == 0: |
|
prev_chord = prediction[i].item() |
|
continue |
|
if prediction[i].item() != prev_chord: |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) |
|
start_time = time_unit * (n_timestep * t + i) |
|
prev_chord = prediction[i].item() |
|
if t == num_instance - 1 and i + num_pad == n_timestep: |
|
if start_time != time_unit * (n_timestep * t + i): |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) |
|
break |
|
pid = os.getpid() |
|
tmp_path = 'tmp_' + str(pid) + '.lab' |
|
with open(tmp_path, 'w') as f: |
|
for line in lines: |
|
f.write(line) |
|
|
|
for m in metrics_.score_metrics: |
|
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) |
|
song_length_list.append(song_length_second) |
|
if verbose: |
|
for m in metrics_.score_metrics: |
|
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) |
|
except: |
|
print('song name %s\' lab file error' % song_name) |
|
|
|
tmp = song_length_list / np.sum(song_length_list) |
|
for m in metrics_.score_metrics: |
|
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) |
|
|
|
return metrics_.score_list_dict, song_length_list, metrics_.average_score |
|
|
|
def large_voca_score_calculation_crf(valid_dataset, config, mean, std, device, pre_model, model, model_type, verbose=False): |
|
idx2voca = idx2voca_chord() |
|
valid_song_names = valid_dataset.song_names |
|
paths = valid_dataset.preprocessor.get_all_files() |
|
|
|
metrics_ = metrics() |
|
song_length_list = list() |
|
for path in paths: |
|
song_name, lab_file_path, mp3_file_path, _ = path |
|
if not song_name in valid_song_names: |
|
continue |
|
try: |
|
n_timestep = config.model['timestep'] |
|
feature, feature_per_second, song_length_second = audio_file_to_features(mp3_file_path, config) |
|
feature = feature.T |
|
feature = (feature - mean) / std |
|
time_unit = feature_per_second |
|
|
|
num_pad = n_timestep - (feature.shape[0] % n_timestep) |
|
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) |
|
num_instance = feature.shape[0] // n_timestep |
|
|
|
start_time = 0.0 |
|
lines = [] |
|
with torch.no_grad(): |
|
model.eval() |
|
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(device) |
|
for t in range(num_instance): |
|
if (model_type == 'cnn') or (model_type == 'crnn') or (model_type == 'btc'): |
|
logits = pre_model(feature[:, n_timestep * t:n_timestep * (t + 1), :], torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) |
|
prediction, _ = model(logits, torch.randint(config.model['num_chords'], (n_timestep,)).to(device)) |
|
else: |
|
raise NotImplementedError |
|
for i in range(n_timestep): |
|
if t == 0 and i == 0: |
|
prev_chord = prediction[i].item() |
|
continue |
|
if prediction[i].item() != prev_chord: |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) |
|
start_time = time_unit * (n_timestep * t + i) |
|
prev_chord = prediction[i].item() |
|
if t == num_instance - 1 and i + num_pad == n_timestep: |
|
if start_time != time_unit * (n_timestep * t + i): |
|
lines.append( |
|
'%.6f %.6f %s\n' % ( |
|
start_time, time_unit * (n_timestep * t + i), idx2voca[prev_chord])) |
|
break |
|
pid = os.getpid() |
|
tmp_path = 'tmp_' + str(pid) + '.lab' |
|
with open(tmp_path, 'w') as f: |
|
for line in lines: |
|
f.write(line) |
|
|
|
for m in metrics_.score_metrics: |
|
metrics_.score_list_dict[m].append(metrics_.score(metric=m, gt_path=lab_file_path, est_path=tmp_path)) |
|
song_length_list.append(song_length_second) |
|
if verbose: |
|
for m in metrics_.score_metrics: |
|
print('song name %s, %s score : %.4f' % (song_name, m, metrics_.score_list_dict[m][-1])) |
|
except: |
|
print('song name %s\' lab file error' % song_name) |
|
|
|
tmp = song_length_list / np.sum(song_length_list) |
|
for m in metrics_.score_metrics: |
|
metrics_.average_score[m] = np.sum(np.multiply(metrics_.score_list_dict[m], tmp)) |
|
|
|
return metrics_.score_list_dict, song_length_list, metrics_.average_score |
|
|