import gradio as gr | |
from transformers import pipeline | |
# Load the question answering pipeline with your fine-tuned model | |
qa_pipe = pipeline("question-answering", model="ayoubkirouane/QA-DistilBERT-base-squad") | |
def answer_question(context, question): | |
result = qa_pipe(question=question, context=context) | |
return result['answer'] | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=answer_question, | |
inputs=["text", "text"], | |
outputs="text", | |
title="Question Answering with QA-DistilBERT-base-squad", | |
description="Provide a context and a question to get an answer.", | |
) | |
# Launch the Gradio app | |
iface.launch(debug=True) |