Spaces:
Runtime error
Runtime error
import gdown | |
def download_file_from_google_drive(file_id, output_file): | |
""" | |
Download a file from Google Drive. | |
:param file_id: The Google Drive file ID. | |
:param output_file: The name of the file to save. | |
""" | |
url = f"https://drive.google.com/uc?id={file_id}" | |
gdown.download(url, output_file, quiet=False) | |
# Example usage: | |
file_id = "1Wgh9dWT6SbakJhvuNkSaIa1ydFtkfUW6" | |
out = "average_model.pth" | |
download_file_from_google_drive(file_id,out) | |
from super_gradients.training import models | |
import torch | |
import supervision as sv | |
import gradio as gr | |
DEVICE = 'cuda' if torch.cuda.is_available() else "cpu" | |
MODEL_ARCH = 'yolo_nas_l' | |
clasess = ["Airplane"] | |
checkpoint_path= "average_model.pth" | |
def run(image , CONFIDENCE_TRESHOLD) : | |
best_model = models.get( | |
MODEL_ARCH, | |
num_classes=len(clasess), | |
checkpoint_path= checkpoint_path | |
).to(DEVICE) | |
result = list(best_model.predict(image, conf=CONFIDENCE_TRESHOLD))[0] | |
detections = sv.Detections( | |
xyxy=result.prediction.bboxes_xyxy, | |
confidence=result.prediction.confidence, | |
class_id=result.prediction.labels.astype(int) | |
) | |
box_annotator = sv.BoxAnnotator() | |
annotated_frame = box_annotator.annotate( | |
scene=image.copy(), | |
detections=detections, | |
labels=clasess | |
) | |
return annotated_frame | |
iface = gr.Interface( | |
fn=run, | |
inputs=[gr.Image(label="Input image", type="numpy") , gr.Slider(0, 1, value=0.5, label="Select your CONFIDENCE_TRESHOLD")], | |
outputs=gr.Image(label="The Prediction Output :", type="numpy"), | |
title="Aerial Airport YOLO Nas object detection", | |
allow_flagging=False , | |
description="I conducted fine-tuning on the YOLO-NAS (YOLO Neural Architecture Search) model, a cutting-edge object detection architecture developed by Deci-AI. My objective was to enhance its ability to detect airplanes in the 'Aerial Airport' dataset", | |
) | |
iface.launch(debug=True) |