|
__all__ = ['classify_image', 'image', 'label', 'example', 'intf', 'cat', 'learn', 'fastbook'] |
|
|
|
from fastai.vision.widgets import * |
|
from fastcore.all import * |
|
from fastbook import * |
|
from fastai.vision.widgets import * |
|
import fastbook |
|
import gradio as gr |
|
fastbook.setup_book() |
|
from fastai import * |
|
|
|
import pathlib |
|
plt = platform.system() |
|
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath |
|
|
|
mod = Path('car_model.pkl') |
|
learn = load_learner(mod) |
|
|
|
cat = ('sedan', 'suv') |
|
|
|
def classify_image(img): |
|
pred,idx,probs= learn.predict(img) |
|
return dict(zip(cat, map(float, probs))) |
|
|
|
image = gr.inputs.Image(shape=(200,200)) |
|
label = gr.components.Label() |
|
example = ['sedan.jpg','suv.jpg'] |
|
|
|
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example) |
|
intf.launch(inline=False) |
|
|