Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
sys.path.append('src')
|
4 |
+
|
5 |
+
from summarizer import summarize
|
6 |
+
from data_retrieval import scrape
|
7 |
+
from data_preprocessing import lda
|
8 |
+
from gsheets import upload_csv_to_new_worksheet
|
9 |
+
|
10 |
+
import joblib
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
def main_orchestrator(num_reddit_posts, num_news_articles, num_youtube_videos, gpt_key, model):
|
15 |
+
#scraping
|
16 |
+
filename = scrape(num_reddit_posts=num_reddit_posts,
|
17 |
+
num_news_articles=num_news_articles,
|
18 |
+
num_youtube_videos=num_youtube_videos)
|
19 |
+
|
20 |
+
# summarizing
|
21 |
+
csv_filename = summarize(filename, gpt_key, model)
|
22 |
+
print(csv_filename)
|
23 |
+
|
24 |
+
# topic modeling
|
25 |
+
topics, graph1, graph2 = lda(filename)
|
26 |
+
print(topics)
|
27 |
+
|
28 |
+
#upload to sheets
|
29 |
+
gsheet_status = upload_csv_to_new_worksheet(topics)
|
30 |
+
return gsheet_status, topics, graph1, graph2
|
31 |
+
|
32 |
+
demo = gr.Interface(
|
33 |
+
fn=main_orchestrator,
|
34 |
+
inputs=[gr.Number(precision=0, minimum=1, maximum=10), gr.Number(precision=0, minimum=1, maximum=10), gr.Number(precision=0, minimum=1, maximum=10), "text", "text"], # list of inputs that correspond to the parameters of the function.
|
35 |
+
outputs=[gr.Textbox(label="Google Sheet Location"), gr.Textbox(label="Topics"), gr.Plot(label="Frequency of Topics"), gr.Plot(label="Top Words in Topics")], # list of outputs that correspond to the returned values in the function.
|
36 |
+
)
|
37 |
+
demo.launch()
|
38 |
+
|