Spaces:
Build error
Build error
ayaderaghul
commited on
Commit
•
c771339
1
Parent(s):
e9df5bd
Update app.py
Browse files
app.py
CHANGED
@@ -5,20 +5,77 @@ from keras.models import load_model
|
|
5 |
from tensorflow_addons.layers import InstanceNormalization
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
9 |
cust = {'InstanceNormalization': InstanceNormalization}
|
10 |
-
model=load_model('
|
11 |
-
# model=load_model('g_model_AtoB_000540.h5',cust)
|
12 |
|
13 |
path = [['ex1.jpg'], ['ex2.jpg'], ['ex3.jpg'],['ex4.jpg'],['ex5.jpg']]
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def show_preds_image(image_path):
|
16 |
-
A =
|
17 |
# A = (A - 127.5) / 127.5
|
18 |
A = np.expand_dims(A,axis=0)
|
19 |
-
B = model
|
20 |
-
B = np.squeeze(B,axis=0)
|
21 |
-
B =
|
|
|
22 |
return B
|
23 |
|
24 |
inputs_image = [
|
|
|
5 |
from tensorflow_addons.layers import InstanceNormalization
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
8 |
+
import tensorflow as tf
|
9 |
+
|
10 |
|
11 |
cust = {'InstanceNormalization': InstanceNormalization}
|
12 |
+
model=load_model('g-cycleGAN-photo2monet-500images-epoch10.h5',cust)
|
|
|
13 |
|
14 |
path = [['ex1.jpg'], ['ex2.jpg'], ['ex3.jpg'],['ex4.jpg'],['ex5.jpg']]
|
15 |
|
16 |
+
# preprocess
|
17 |
+
AUTOTUNE = tf.data.AUTOTUNE
|
18 |
+
BUFFER_SIZE = 400
|
19 |
+
BATCH_SIZE = 1
|
20 |
+
IMG_WIDTH = 256
|
21 |
+
IMG_HEIGHT = 256
|
22 |
+
|
23 |
+
def resize(image,height,width):
|
24 |
+
'''
|
25 |
+
Resizing the image
|
26 |
+
'''
|
27 |
+
resized_image = tf.image.resize(image,[height,width],method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
|
28 |
+
return resized_image
|
29 |
+
|
30 |
+
def normalize(input_image):
|
31 |
+
# def normalize(real_image, input_image)
|
32 |
+
input_image = (input_image/127.5) - 1
|
33 |
+
return input_image
|
34 |
+
# real_image = (real_image/127.5) - 1
|
35 |
+
# return real_image,input_image
|
36 |
+
|
37 |
+
def load(img_file):
|
38 |
+
'''
|
39 |
+
load the image. Since we need only the target image and a
|
40 |
+
gray scale version of the same, we are going to load one
|
41 |
+
and create the other from it
|
42 |
+
'''
|
43 |
+
img = tf.io.read_file(img_file)
|
44 |
+
img = tf.io.decode_jpeg(img)
|
45 |
+
|
46 |
+
# w = tf.shape(img)[1]
|
47 |
+
# w = w//2
|
48 |
+
|
49 |
+
# real_image = img[:,:w,:]
|
50 |
+
|
51 |
+
real_image = tf.cast(img,tf.float32)
|
52 |
+
|
53 |
+
return real_image
|
54 |
+
|
55 |
+
def load_image_test(image_file):
|
56 |
+
'''
|
57 |
+
We are not using random jitter here and thus creating
|
58 |
+
a gray scale image after resizing.
|
59 |
+
'''
|
60 |
+
re = load(image_file)
|
61 |
+
re = resize(re,IMG_HEIGHT,IMG_WIDTH)
|
62 |
+
# inp = tf.image.rgb_to_grayscale(re)
|
63 |
+
# re,inp = normalize(re,inp)
|
64 |
+
# inp = re
|
65 |
+
# re, inp = normalize(re,inp)
|
66 |
+
re = normalize(re)
|
67 |
+
# return inp,re
|
68 |
+
return re
|
69 |
+
|
70 |
+
|
71 |
def show_preds_image(image_path):
|
72 |
+
A = load_image_test(image_path)
|
73 |
# A = (A - 127.5) / 127.5
|
74 |
A = np.expand_dims(A,axis=0)
|
75 |
+
B = model(A)
|
76 |
+
# B = np.squeeze(B,axis=0)
|
77 |
+
B = B[0]
|
78 |
+
B = B * 0.5 + 0.5
|
79 |
return B
|
80 |
|
81 |
inputs_image = [
|