|  |  | 
					
						
						|  | """ | 
					
						
						|  | Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit | 
					
						
						|  |  | 
					
						
						|  | Format                      | `export.py --include`         | Model | 
					
						
						|  | ---                         | ---                           | --- | 
					
						
						|  | PyTorch                     | -                             | yolov5s.pt | 
					
						
						|  | TorchScript                 | `torchscript`                 | yolov5s.torchscript | 
					
						
						|  | ONNX                        | `onnx`                        | yolov5s.onnx | 
					
						
						|  | OpenVINO                    | `openvino`                    | yolov5s_openvino_model/ | 
					
						
						|  | TensorRT                    | `engine`                      | yolov5s.engine | 
					
						
						|  | CoreML                      | `coreml`                      | yolov5s.mlmodel | 
					
						
						|  | TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/ | 
					
						
						|  | TensorFlow GraphDef         | `pb`                          | yolov5s.pb | 
					
						
						|  | TensorFlow Lite             | `tflite`                      | yolov5s.tflite | 
					
						
						|  | TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite | 
					
						
						|  | TensorFlow.js               | `tfjs`                        | yolov5s_web_model/ | 
					
						
						|  | PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/ | 
					
						
						|  |  | 
					
						
						|  | Requirements: | 
					
						
						|  | $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU | 
					
						
						|  | $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU | 
					
						
						|  |  | 
					
						
						|  | Usage: | 
					
						
						|  | $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... | 
					
						
						|  |  | 
					
						
						|  | Inference: | 
					
						
						|  | $ python detect.py --weights yolov5s.pt                 # PyTorch | 
					
						
						|  | yolov5s.torchscript        # TorchScript | 
					
						
						|  | yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn | 
					
						
						|  | yolov5s_openvino_model     # OpenVINO | 
					
						
						|  | yolov5s.engine             # TensorRT | 
					
						
						|  | yolov5s.mlmodel            # CoreML (macOS-only) | 
					
						
						|  | yolov5s_saved_model        # TensorFlow SavedModel | 
					
						
						|  | yolov5s.pb                 # TensorFlow GraphDef | 
					
						
						|  | yolov5s.tflite             # TensorFlow Lite | 
					
						
						|  | yolov5s_edgetpu.tflite     # TensorFlow Edge TPU | 
					
						
						|  | yolov5s_paddle_model       # PaddlePaddle | 
					
						
						|  |  | 
					
						
						|  | TensorFlow.js: | 
					
						
						|  | $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example | 
					
						
						|  | $ npm install | 
					
						
						|  | $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model | 
					
						
						|  | $ npm start | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import contextlib | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import platform | 
					
						
						|  | import re | 
					
						
						|  | import subprocess | 
					
						
						|  | import sys | 
					
						
						|  | import time | 
					
						
						|  | import warnings | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import torch | 
					
						
						|  | from torch.utils.mobile_optimizer import optimize_for_mobile | 
					
						
						|  |  | 
					
						
						|  | FILE = Path(__file__).resolve() | 
					
						
						|  | ROOT = FILE.parents[0] | 
					
						
						|  | if str(ROOT) not in sys.path: | 
					
						
						|  | sys.path.append(str(ROOT)) | 
					
						
						|  | if platform.system() != 'Windows': | 
					
						
						|  | ROOT = Path(os.path.relpath(ROOT, Path.cwd())) | 
					
						
						|  |  | 
					
						
						|  | from models.experimental import attempt_load | 
					
						
						|  | from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel | 
					
						
						|  | from utils.dataloaders import LoadImages | 
					
						
						|  | from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version, | 
					
						
						|  | check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save) | 
					
						
						|  | from utils.torch_utils import select_device, smart_inference_mode | 
					
						
						|  |  | 
					
						
						|  | MACOS = platform.system() == 'Darwin' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class iOSModel(torch.nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, model, im): | 
					
						
						|  | super().__init__() | 
					
						
						|  | b, c, h, w = im.shape | 
					
						
						|  | self.model = model | 
					
						
						|  | self.nc = model.nc | 
					
						
						|  | if w == h: | 
					
						
						|  | self.normalize = 1. / w | 
					
						
						|  | else: | 
					
						
						|  | self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1) | 
					
						
						|  | return cls * conf, xywh * self.normalize | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def export_formats(): | 
					
						
						|  |  | 
					
						
						|  | x = [ | 
					
						
						|  | ['PyTorch', '-', '.pt', True, True], | 
					
						
						|  | ['TorchScript', 'torchscript', '.torchscript', True, True], | 
					
						
						|  | ['ONNX', 'onnx', '.onnx', True, True], | 
					
						
						|  | ['OpenVINO', 'openvino', '_openvino_model', True, False], | 
					
						
						|  | ['TensorRT', 'engine', '.engine', False, True], | 
					
						
						|  | ['CoreML', 'coreml', '.mlmodel', True, False], | 
					
						
						|  | ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], | 
					
						
						|  | ['TensorFlow GraphDef', 'pb', '.pb', True, True], | 
					
						
						|  | ['TensorFlow Lite', 'tflite', '.tflite', True, False], | 
					
						
						|  | ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], | 
					
						
						|  | ['TensorFlow.js', 'tfjs', '_web_model', False, False], | 
					
						
						|  | ['PaddlePaddle', 'paddle', '_paddle_model', True, True],] | 
					
						
						|  | return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def try_export(inner_func): | 
					
						
						|  |  | 
					
						
						|  | inner_args = get_default_args(inner_func) | 
					
						
						|  |  | 
					
						
						|  | def outer_func(*args, **kwargs): | 
					
						
						|  | prefix = inner_args['prefix'] | 
					
						
						|  | try: | 
					
						
						|  | with Profile() as dt: | 
					
						
						|  | f, model = inner_func(*args, **kwargs) | 
					
						
						|  | LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') | 
					
						
						|  | return f, model | 
					
						
						|  | except Exception as e: | 
					
						
						|  | LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') | 
					
						
						|  | return None, None | 
					
						
						|  |  | 
					
						
						|  | return outer_func | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') | 
					
						
						|  | f = file.with_suffix('.torchscript') | 
					
						
						|  |  | 
					
						
						|  | ts = torch.jit.trace(model, im, strict=False) | 
					
						
						|  | d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names} | 
					
						
						|  | extra_files = {'config.txt': json.dumps(d)} | 
					
						
						|  | if optimize: | 
					
						
						|  | optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) | 
					
						
						|  | else: | 
					
						
						|  | ts.save(str(f), _extra_files=extra_files) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): | 
					
						
						|  |  | 
					
						
						|  | check_requirements('onnx>=1.12.0') | 
					
						
						|  | import onnx | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') | 
					
						
						|  | f = file.with_suffix('.onnx') | 
					
						
						|  |  | 
					
						
						|  | output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] | 
					
						
						|  | if dynamic: | 
					
						
						|  | dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} | 
					
						
						|  | if isinstance(model, SegmentationModel): | 
					
						
						|  | dynamic['output0'] = {0: 'batch', 1: 'anchors'} | 
					
						
						|  | dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} | 
					
						
						|  | elif isinstance(model, DetectionModel): | 
					
						
						|  | dynamic['output0'] = {0: 'batch', 1: 'anchors'} | 
					
						
						|  |  | 
					
						
						|  | torch.onnx.export( | 
					
						
						|  | model.cpu() if dynamic else model, | 
					
						
						|  | im.cpu() if dynamic else im, | 
					
						
						|  | f, | 
					
						
						|  | verbose=False, | 
					
						
						|  | opset_version=opset, | 
					
						
						|  | do_constant_folding=True, | 
					
						
						|  | input_names=['images'], | 
					
						
						|  | output_names=output_names, | 
					
						
						|  | dynamic_axes=dynamic or None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_onnx = onnx.load(f) | 
					
						
						|  | onnx.checker.check_model(model_onnx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | d = {'stride': int(max(model.stride)), 'names': model.names} | 
					
						
						|  | for k, v in d.items(): | 
					
						
						|  | meta = model_onnx.metadata_props.add() | 
					
						
						|  | meta.key, meta.value = k, str(v) | 
					
						
						|  | onnx.save(model_onnx, f) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if simplify: | 
					
						
						|  | try: | 
					
						
						|  | cuda = torch.cuda.is_available() | 
					
						
						|  | check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) | 
					
						
						|  | import onnxsim | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') | 
					
						
						|  | model_onnx, check = onnxsim.simplify(model_onnx) | 
					
						
						|  | assert check, 'assert check failed' | 
					
						
						|  | onnx.save(model_onnx, f) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | LOGGER.info(f'{prefix} simplifier failure: {e}') | 
					
						
						|  | return f, model_onnx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')): | 
					
						
						|  |  | 
					
						
						|  | check_requirements('openvino-dev') | 
					
						
						|  | import openvino.inference_engine as ie | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') | 
					
						
						|  | f = str(file).replace('.pt', f'_openvino_model{os.sep}') | 
					
						
						|  |  | 
					
						
						|  | args = [ | 
					
						
						|  | 'mo', | 
					
						
						|  | '--input_model', | 
					
						
						|  | str(file.with_suffix('.onnx')), | 
					
						
						|  | '--output_dir', | 
					
						
						|  | f, | 
					
						
						|  | '--data_type', | 
					
						
						|  | ('FP16' if half else 'FP32'),] | 
					
						
						|  | subprocess.run(args, check=True, env=os.environ) | 
					
						
						|  | yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): | 
					
						
						|  |  | 
					
						
						|  | check_requirements(('paddlepaddle', 'x2paddle')) | 
					
						
						|  | import x2paddle | 
					
						
						|  | from x2paddle.convert import pytorch2paddle | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') | 
					
						
						|  | f = str(file).replace('.pt', f'_paddle_model{os.sep}') | 
					
						
						|  |  | 
					
						
						|  | pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) | 
					
						
						|  | yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')): | 
					
						
						|  |  | 
					
						
						|  | check_requirements('coremltools') | 
					
						
						|  | import coremltools as ct | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') | 
					
						
						|  | f = file.with_suffix('.mlmodel') | 
					
						
						|  |  | 
					
						
						|  | if nms: | 
					
						
						|  | model = iOSModel(model, im) | 
					
						
						|  | ts = torch.jit.trace(model, im, strict=False) | 
					
						
						|  | ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) | 
					
						
						|  | bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) | 
					
						
						|  | if bits < 32: | 
					
						
						|  | if MACOS: | 
					
						
						|  | with warnings.catch_warnings(): | 
					
						
						|  | warnings.filterwarnings('ignore', category=DeprecationWarning) | 
					
						
						|  | ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) | 
					
						
						|  | else: | 
					
						
						|  | print(f'{prefix} quantization only supported on macOS, skipping...') | 
					
						
						|  | ct_model.save(f) | 
					
						
						|  | return f, ct_model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): | 
					
						
						|  |  | 
					
						
						|  | assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' | 
					
						
						|  | try: | 
					
						
						|  | import tensorrt as trt | 
					
						
						|  | except Exception: | 
					
						
						|  | if platform.system() == 'Linux': | 
					
						
						|  | check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') | 
					
						
						|  | import tensorrt as trt | 
					
						
						|  |  | 
					
						
						|  | if trt.__version__[0] == '7': | 
					
						
						|  | grid = model.model[-1].anchor_grid | 
					
						
						|  | model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] | 
					
						
						|  | export_onnx(model, im, file, 12, dynamic, simplify) | 
					
						
						|  | model.model[-1].anchor_grid = grid | 
					
						
						|  | else: | 
					
						
						|  | check_version(trt.__version__, '8.0.0', hard=True) | 
					
						
						|  | export_onnx(model, im, file, 12, dynamic, simplify) | 
					
						
						|  | onnx = file.with_suffix('.onnx') | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') | 
					
						
						|  | assert onnx.exists(), f'failed to export ONNX file: {onnx}' | 
					
						
						|  | f = file.with_suffix('.engine') | 
					
						
						|  | logger = trt.Logger(trt.Logger.INFO) | 
					
						
						|  | if verbose: | 
					
						
						|  | logger.min_severity = trt.Logger.Severity.VERBOSE | 
					
						
						|  |  | 
					
						
						|  | builder = trt.Builder(logger) | 
					
						
						|  | config = builder.create_builder_config() | 
					
						
						|  | config.max_workspace_size = workspace * 1 << 30 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | 
					
						
						|  | network = builder.create_network(flag) | 
					
						
						|  | parser = trt.OnnxParser(network, logger) | 
					
						
						|  | if not parser.parse_from_file(str(onnx)): | 
					
						
						|  | raise RuntimeError(f'failed to load ONNX file: {onnx}') | 
					
						
						|  |  | 
					
						
						|  | inputs = [network.get_input(i) for i in range(network.num_inputs)] | 
					
						
						|  | outputs = [network.get_output(i) for i in range(network.num_outputs)] | 
					
						
						|  | for inp in inputs: | 
					
						
						|  | LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') | 
					
						
						|  | for out in outputs: | 
					
						
						|  | LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') | 
					
						
						|  |  | 
					
						
						|  | if dynamic: | 
					
						
						|  | if im.shape[0] <= 1: | 
					
						
						|  | LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') | 
					
						
						|  | profile = builder.create_optimization_profile() | 
					
						
						|  | for inp in inputs: | 
					
						
						|  | profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) | 
					
						
						|  | config.add_optimization_profile(profile) | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') | 
					
						
						|  | if builder.platform_has_fast_fp16 and half: | 
					
						
						|  | config.set_flag(trt.BuilderFlag.FP16) | 
					
						
						|  | with builder.build_engine(network, config) as engine, open(f, 'wb') as t: | 
					
						
						|  | t.write(engine.serialize()) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_saved_model(model, | 
					
						
						|  | im, | 
					
						
						|  | file, | 
					
						
						|  | dynamic, | 
					
						
						|  | tf_nms=False, | 
					
						
						|  | agnostic_nms=False, | 
					
						
						|  | topk_per_class=100, | 
					
						
						|  | topk_all=100, | 
					
						
						|  | iou_thres=0.45, | 
					
						
						|  | conf_thres=0.25, | 
					
						
						|  | keras=False, | 
					
						
						|  | prefix=colorstr('TensorFlow SavedModel:')): | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | except Exception: | 
					
						
						|  | check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 | 
					
						
						|  |  | 
					
						
						|  | from models.tf import TFModel | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | 
					
						
						|  | f = str(file).replace('.pt', '_saved_model') | 
					
						
						|  | batch_size, ch, *imgsz = list(im.shape) | 
					
						
						|  |  | 
					
						
						|  | tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) | 
					
						
						|  | im = tf.zeros((batch_size, *imgsz, ch)) | 
					
						
						|  | _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | 
					
						
						|  | inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) | 
					
						
						|  | outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | 
					
						
						|  | keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) | 
					
						
						|  | keras_model.trainable = False | 
					
						
						|  | keras_model.summary() | 
					
						
						|  | if keras: | 
					
						
						|  | keras_model.save(f, save_format='tf') | 
					
						
						|  | else: | 
					
						
						|  | spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) | 
					
						
						|  | m = tf.function(lambda x: keras_model(x)) | 
					
						
						|  | m = m.get_concrete_function(spec) | 
					
						
						|  | frozen_func = convert_variables_to_constants_v2(m) | 
					
						
						|  | tfm = tf.Module() | 
					
						
						|  | tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) | 
					
						
						|  | tfm.__call__(im) | 
					
						
						|  | tf.saved_model.save(tfm, | 
					
						
						|  | f, | 
					
						
						|  | options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( | 
					
						
						|  | tf.__version__, '2.6') else tf.saved_model.SaveOptions()) | 
					
						
						|  | return f, keras_model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): | 
					
						
						|  |  | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | 
					
						
						|  | f = file.with_suffix('.pb') | 
					
						
						|  |  | 
					
						
						|  | m = tf.function(lambda x: keras_model(x)) | 
					
						
						|  | m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) | 
					
						
						|  | frozen_func = convert_variables_to_constants_v2(m) | 
					
						
						|  | frozen_func.graph.as_graph_def() | 
					
						
						|  | tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): | 
					
						
						|  |  | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | 
					
						
						|  | batch_size, ch, *imgsz = list(im.shape) | 
					
						
						|  | f = str(file).replace('.pt', '-fp16.tflite') | 
					
						
						|  |  | 
					
						
						|  | converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) | 
					
						
						|  | converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] | 
					
						
						|  | converter.target_spec.supported_types = [tf.float16] | 
					
						
						|  | converter.optimizations = [tf.lite.Optimize.DEFAULT] | 
					
						
						|  | if int8: | 
					
						
						|  | from models.tf import representative_dataset_gen | 
					
						
						|  | dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) | 
					
						
						|  | converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) | 
					
						
						|  | converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] | 
					
						
						|  | converter.target_spec.supported_types = [] | 
					
						
						|  | converter.inference_input_type = tf.uint8 | 
					
						
						|  | converter.inference_output_type = tf.uint8 | 
					
						
						|  | converter.experimental_new_quantizer = True | 
					
						
						|  | f = str(file).replace('.pt', '-int8.tflite') | 
					
						
						|  | if nms or agnostic_nms: | 
					
						
						|  | converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) | 
					
						
						|  |  | 
					
						
						|  | tflite_model = converter.convert() | 
					
						
						|  | open(f, 'wb').write(tflite_model) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_edgetpu(file, prefix=colorstr('Edge TPU:')): | 
					
						
						|  |  | 
					
						
						|  | cmd = 'edgetpu_compiler --version' | 
					
						
						|  | help_url = 'https://coral.ai/docs/edgetpu/compiler/' | 
					
						
						|  | assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' | 
					
						
						|  | if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0: | 
					
						
						|  | LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') | 
					
						
						|  | sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 | 
					
						
						|  | for c in ( | 
					
						
						|  | 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', | 
					
						
						|  | 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', | 
					
						
						|  | 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): | 
					
						
						|  | subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) | 
					
						
						|  | ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') | 
					
						
						|  | f = str(file).replace('.pt', '-int8_edgetpu.tflite') | 
					
						
						|  | f_tfl = str(file).replace('.pt', '-int8.tflite') | 
					
						
						|  |  | 
					
						
						|  | subprocess.run([ | 
					
						
						|  | 'edgetpu_compiler', | 
					
						
						|  | '-s', | 
					
						
						|  | '-d', | 
					
						
						|  | '-k', | 
					
						
						|  | '10', | 
					
						
						|  | '--out_dir', | 
					
						
						|  | str(file.parent), | 
					
						
						|  | f_tfl,], check=True) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @try_export | 
					
						
						|  | def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')): | 
					
						
						|  |  | 
					
						
						|  | check_requirements('tensorflowjs') | 
					
						
						|  | import tensorflowjs as tfjs | 
					
						
						|  |  | 
					
						
						|  | LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') | 
					
						
						|  | f = str(file).replace('.pt', '_web_model') | 
					
						
						|  | f_pb = file.with_suffix('.pb') | 
					
						
						|  | f_json = f'{f}/model.json' | 
					
						
						|  |  | 
					
						
						|  | args = [ | 
					
						
						|  | 'tensorflowjs_converter', | 
					
						
						|  | '--input_format=tf_frozen_model', | 
					
						
						|  | '--quantize_uint8' if int8 else '', | 
					
						
						|  | '--output_node_names=Identity,Identity_1,Identity_2,Identity_3', | 
					
						
						|  | str(f_pb), | 
					
						
						|  | str(f),] | 
					
						
						|  | subprocess.run([arg for arg in args if arg], check=True) | 
					
						
						|  |  | 
					
						
						|  | json = Path(f_json).read_text() | 
					
						
						|  | with open(f_json, 'w') as j: | 
					
						
						|  | subst = re.sub( | 
					
						
						|  | r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | 
					
						
						|  | r'"Identity.?.?": {"name": "Identity.?.?"}, ' | 
					
						
						|  | r'"Identity.?.?": {"name": "Identity.?.?"}, ' | 
					
						
						|  | r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' | 
					
						
						|  | r'"Identity_1": {"name": "Identity_1"}, ' | 
					
						
						|  | r'"Identity_2": {"name": "Identity_2"}, ' | 
					
						
						|  | r'"Identity_3": {"name": "Identity_3"}}}', json) | 
					
						
						|  | j.write(subst) | 
					
						
						|  | return f, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def add_tflite_metadata(file, metadata, num_outputs): | 
					
						
						|  |  | 
					
						
						|  | with contextlib.suppress(ImportError): | 
					
						
						|  |  | 
					
						
						|  | from tflite_support import flatbuffers | 
					
						
						|  | from tflite_support import metadata as _metadata | 
					
						
						|  | from tflite_support import metadata_schema_py_generated as _metadata_fb | 
					
						
						|  |  | 
					
						
						|  | tmp_file = Path('/tmp/meta.txt') | 
					
						
						|  | with open(tmp_file, 'w') as meta_f: | 
					
						
						|  | meta_f.write(str(metadata)) | 
					
						
						|  |  | 
					
						
						|  | model_meta = _metadata_fb.ModelMetadataT() | 
					
						
						|  | label_file = _metadata_fb.AssociatedFileT() | 
					
						
						|  | label_file.name = tmp_file.name | 
					
						
						|  | model_meta.associatedFiles = [label_file] | 
					
						
						|  |  | 
					
						
						|  | subgraph = _metadata_fb.SubGraphMetadataT() | 
					
						
						|  | subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] | 
					
						
						|  | subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs | 
					
						
						|  | model_meta.subgraphMetadata = [subgraph] | 
					
						
						|  |  | 
					
						
						|  | b = flatbuffers.Builder(0) | 
					
						
						|  | b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | 
					
						
						|  | metadata_buf = b.Output() | 
					
						
						|  |  | 
					
						
						|  | populator = _metadata.MetadataPopulator.with_model_file(file) | 
					
						
						|  | populator.load_metadata_buffer(metadata_buf) | 
					
						
						|  | populator.load_associated_files([str(tmp_file)]) | 
					
						
						|  | populator.populate() | 
					
						
						|  | tmp_file.unlink() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')): | 
					
						
						|  |  | 
					
						
						|  | import coremltools as ct | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  | print(f'{prefix} starting pipeline with coremltools {ct.__version__}...') | 
					
						
						|  | batch_size, ch, h, w = list(im.shape) | 
					
						
						|  | t = time.time() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | spec = model.get_spec() | 
					
						
						|  | out0, out1 = iter(spec.description.output) | 
					
						
						|  | if platform.system() == 'Darwin': | 
					
						
						|  | img = Image.new('RGB', (w, h)) | 
					
						
						|  |  | 
					
						
						|  | out = model.predict({'image': img}) | 
					
						
						|  | out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape | 
					
						
						|  | else: | 
					
						
						|  | s = tuple(y[0].shape) | 
					
						
						|  | out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height | 
					
						
						|  | na, nc = out0_shape | 
					
						
						|  |  | 
					
						
						|  | assert len(names) == nc, f'{len(names)} names found for nc={nc}' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out0.type.multiArrayType.shape[:] = out0_shape | 
					
						
						|  | out1.type.multiArrayType.shape[:] = out1_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print(spec.description) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = ct.models.MLModel(spec) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | nms_spec = ct.proto.Model_pb2.Model() | 
					
						
						|  | nms_spec.specificationVersion = 5 | 
					
						
						|  | for i in range(2): | 
					
						
						|  | decoder_output = model._spec.description.output[i].SerializeToString() | 
					
						
						|  | nms_spec.description.input.add() | 
					
						
						|  | nms_spec.description.input[i].ParseFromString(decoder_output) | 
					
						
						|  | nms_spec.description.output.add() | 
					
						
						|  | nms_spec.description.output[i].ParseFromString(decoder_output) | 
					
						
						|  |  | 
					
						
						|  | nms_spec.description.output[0].name = 'confidence' | 
					
						
						|  | nms_spec.description.output[1].name = 'coordinates' | 
					
						
						|  |  | 
					
						
						|  | output_sizes = [nc, 4] | 
					
						
						|  | for i in range(2): | 
					
						
						|  | ma_type = nms_spec.description.output[i].type.multiArrayType | 
					
						
						|  | ma_type.shapeRange.sizeRanges.add() | 
					
						
						|  | ma_type.shapeRange.sizeRanges[0].lowerBound = 0 | 
					
						
						|  | ma_type.shapeRange.sizeRanges[0].upperBound = -1 | 
					
						
						|  | ma_type.shapeRange.sizeRanges.add() | 
					
						
						|  | ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] | 
					
						
						|  | ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] | 
					
						
						|  | del ma_type.shape[:] | 
					
						
						|  |  | 
					
						
						|  | nms = nms_spec.nonMaximumSuppression | 
					
						
						|  | nms.confidenceInputFeatureName = out0.name | 
					
						
						|  | nms.coordinatesInputFeatureName = out1.name | 
					
						
						|  | nms.confidenceOutputFeatureName = 'confidence' | 
					
						
						|  | nms.coordinatesOutputFeatureName = 'coordinates' | 
					
						
						|  | nms.iouThresholdInputFeatureName = 'iouThreshold' | 
					
						
						|  | nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' | 
					
						
						|  | nms.iouThreshold = 0.45 | 
					
						
						|  | nms.confidenceThreshold = 0.25 | 
					
						
						|  | nms.pickTop.perClass = True | 
					
						
						|  | nms.stringClassLabels.vector.extend(names.values()) | 
					
						
						|  | nms_model = ct.models.MLModel(nms_spec) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), | 
					
						
						|  | ('iouThreshold', ct.models.datatypes.Double()), | 
					
						
						|  | ('confidenceThreshold', ct.models.datatypes.Double())], | 
					
						
						|  | output_features=['confidence', 'coordinates']) | 
					
						
						|  | pipeline.add_model(model) | 
					
						
						|  | pipeline.add_model(nms_model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) | 
					
						
						|  | pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) | 
					
						
						|  | pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipeline.spec.specificationVersion = 5 | 
					
						
						|  | pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5' | 
					
						
						|  | pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5' | 
					
						
						|  | pipeline.spec.description.metadata.author = 'glenn.jocher@ultralytics.com' | 
					
						
						|  | pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE' | 
					
						
						|  | pipeline.spec.description.metadata.userDefined.update({ | 
					
						
						|  | 'classes': ','.join(names.values()), | 
					
						
						|  | 'iou_threshold': str(nms.iouThreshold), | 
					
						
						|  | 'confidence_threshold': str(nms.confidenceThreshold)}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | f = file.with_suffix('.mlmodel') | 
					
						
						|  | model = ct.models.MLModel(pipeline.spec) | 
					
						
						|  | model.input_description['image'] = 'Input image' | 
					
						
						|  | model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})' | 
					
						
						|  | model.input_description['confidenceThreshold'] = \ | 
					
						
						|  | f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})' | 
					
						
						|  | model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")' | 
					
						
						|  | model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)' | 
					
						
						|  | model.save(f) | 
					
						
						|  | print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @smart_inference_mode() | 
					
						
						|  | def run( | 
					
						
						|  | data=ROOT / 'data/coco128.yaml', | 
					
						
						|  | weights=ROOT / 'yolov5s.pt', | 
					
						
						|  | imgsz=(640, 640), | 
					
						
						|  | batch_size=1, | 
					
						
						|  | device='cpu', | 
					
						
						|  | include=('torchscript', 'onnx'), | 
					
						
						|  | half=False, | 
					
						
						|  | inplace=False, | 
					
						
						|  | keras=False, | 
					
						
						|  | optimize=False, | 
					
						
						|  | int8=False, | 
					
						
						|  | dynamic=False, | 
					
						
						|  | simplify=False, | 
					
						
						|  | opset=12, | 
					
						
						|  | verbose=False, | 
					
						
						|  | workspace=4, | 
					
						
						|  | nms=False, | 
					
						
						|  | agnostic_nms=False, | 
					
						
						|  | topk_per_class=100, | 
					
						
						|  | topk_all=100, | 
					
						
						|  | iou_thres=0.45, | 
					
						
						|  | conf_thres=0.25, | 
					
						
						|  | ): | 
					
						
						|  | t = time.time() | 
					
						
						|  | include = [x.lower() for x in include] | 
					
						
						|  | fmts = tuple(export_formats()['Argument'][1:]) | 
					
						
						|  | flags = [x in include for x in fmts] | 
					
						
						|  | assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' | 
					
						
						|  | jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags | 
					
						
						|  | file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = select_device(device) | 
					
						
						|  | if half: | 
					
						
						|  | assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' | 
					
						
						|  | assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' | 
					
						
						|  | model = attempt_load(weights, device=device, inplace=True, fuse=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | imgsz *= 2 if len(imgsz) == 1 else 1 | 
					
						
						|  | if optimize: | 
					
						
						|  | assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gs = int(max(model.stride)) | 
					
						
						|  | imgsz = [check_img_size(x, gs) for x in imgsz] | 
					
						
						|  | im = torch.zeros(batch_size, 3, *imgsz).to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model.eval() | 
					
						
						|  | for k, m in model.named_modules(): | 
					
						
						|  | if isinstance(m, Detect): | 
					
						
						|  | m.inplace = inplace | 
					
						
						|  | m.dynamic = dynamic | 
					
						
						|  | m.export = True | 
					
						
						|  |  | 
					
						
						|  | for _ in range(2): | 
					
						
						|  | y = model(im) | 
					
						
						|  | if half and not coreml: | 
					
						
						|  | im, model = im.half(), model.half() | 
					
						
						|  | shape = tuple((y[0] if isinstance(y, tuple) else y).shape) | 
					
						
						|  | metadata = {'stride': int(max(model.stride)), 'names': model.names} | 
					
						
						|  | LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | f = [''] * len(fmts) | 
					
						
						|  | warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) | 
					
						
						|  | if jit: | 
					
						
						|  | f[0], _ = export_torchscript(model, im, file, optimize) | 
					
						
						|  | if engine: | 
					
						
						|  | f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) | 
					
						
						|  | if onnx or xml: | 
					
						
						|  | f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) | 
					
						
						|  | if xml: | 
					
						
						|  | f[3], _ = export_openvino(file, metadata, half) | 
					
						
						|  | if coreml: | 
					
						
						|  | f[4], ct_model = export_coreml(model, im, file, int8, half, nms) | 
					
						
						|  | if nms: | 
					
						
						|  | pipeline_coreml(ct_model, im, file, model.names, y) | 
					
						
						|  | if any((saved_model, pb, tflite, edgetpu, tfjs)): | 
					
						
						|  | assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' | 
					
						
						|  | assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' | 
					
						
						|  | f[5], s_model = export_saved_model(model.cpu(), | 
					
						
						|  | im, | 
					
						
						|  | file, | 
					
						
						|  | dynamic, | 
					
						
						|  | tf_nms=nms or agnostic_nms or tfjs, | 
					
						
						|  | agnostic_nms=agnostic_nms or tfjs, | 
					
						
						|  | topk_per_class=topk_per_class, | 
					
						
						|  | topk_all=topk_all, | 
					
						
						|  | iou_thres=iou_thres, | 
					
						
						|  | conf_thres=conf_thres, | 
					
						
						|  | keras=keras) | 
					
						
						|  | if pb or tfjs: | 
					
						
						|  | f[6], _ = export_pb(s_model, file) | 
					
						
						|  | if tflite or edgetpu: | 
					
						
						|  | f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) | 
					
						
						|  | if edgetpu: | 
					
						
						|  | f[8], _ = export_edgetpu(file) | 
					
						
						|  | add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) | 
					
						
						|  | if tfjs: | 
					
						
						|  | f[9], _ = export_tfjs(file, int8) | 
					
						
						|  | if paddle: | 
					
						
						|  | f[10], _ = export_paddle(model, im, file, metadata) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | f = [str(x) for x in f if x] | 
					
						
						|  | if any(f): | 
					
						
						|  | cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) | 
					
						
						|  | det &= not seg | 
					
						
						|  | dir = Path('segment' if seg else 'classify' if cls else '') | 
					
						
						|  | h = '--half' if half else '' | 
					
						
						|  | s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \ | 
					
						
						|  | '# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else '' | 
					
						
						|  | LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' | 
					
						
						|  | f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | 
					
						
						|  | f"\nDetect:          python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" | 
					
						
						|  | f"\nValidate:        python {dir / 'val.py'} --weights {f[-1]} {h}" | 
					
						
						|  | f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')  {s}" | 
					
						
						|  | f'\nVisualize:       https://netron.app') | 
					
						
						|  | return f | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_opt(known=False): | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  | parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') | 
					
						
						|  | parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') | 
					
						
						|  | parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') | 
					
						
						|  | parser.add_argument('--batch-size', type=int, default=1, help='batch size') | 
					
						
						|  | parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | 
					
						
						|  | parser.add_argument('--half', action='store_true', help='FP16 half-precision export') | 
					
						
						|  | parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') | 
					
						
						|  | parser.add_argument('--keras', action='store_true', help='TF: use Keras') | 
					
						
						|  | parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') | 
					
						
						|  | parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') | 
					
						
						|  | parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') | 
					
						
						|  | parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') | 
					
						
						|  | parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version') | 
					
						
						|  | parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') | 
					
						
						|  | parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') | 
					
						
						|  | parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') | 
					
						
						|  | parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') | 
					
						
						|  | parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') | 
					
						
						|  | parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') | 
					
						
						|  | parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') | 
					
						
						|  | parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '--include', | 
					
						
						|  | nargs='+', | 
					
						
						|  | default=['torchscript'], | 
					
						
						|  | help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle') | 
					
						
						|  | opt = parser.parse_known_args()[0] if known else parser.parse_args() | 
					
						
						|  | print_args(vars(opt)) | 
					
						
						|  | return opt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(opt): | 
					
						
						|  | for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): | 
					
						
						|  | run(**vars(opt)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | opt = parse_opt() | 
					
						
						|  | main(opt) | 
					
						
						|  |  |