vector stores
Browse files
ingest.py
CHANGED
@@ -1,34 +1,28 @@
|
|
1 |
-
import os
|
2 |
-
from langchain_community.vectorstores.faiss import FAISS
|
3 |
-
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
4 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
6 |
|
7 |
-
# Define the directory paths
|
8 |
-
DATA_PATH = "data"
|
9 |
-
VECTORSTORES_DIR = "vectorstores"
|
10 |
-
DB_FAISS_PATH = os.path.join(VECTORSTORES_DIR, "db_faiss")
|
11 |
|
12 |
-
|
13 |
-
try:
|
14 |
-
os.makedirs(VECTORSTORES_DIR, exist_ok=True)
|
15 |
-
except Exception as e:
|
16 |
-
print(f"Error creating directory: {e}")
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
def create_vector_db():
|
20 |
-
|
21 |
-
loader = DirectoryLoader(DATA_PATH, glob="*.pdf", loader_cls=PyPDFLoader)
|
22 |
documents = loader.load()
|
23 |
|
24 |
-
# Split text from documents
|
25 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
|
|
26 |
texts = text_splitter.split_documents(documents)
|
27 |
|
28 |
-
#
|
29 |
-
|
|
|
30 |
|
31 |
-
# Create FAISS vector database
|
32 |
db = FAISS.from_documents(texts, embeddings)
|
33 |
db.save_local(DB_FAISS_PATH)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader # could have done any unstructured text loader like ppt and xlsx
|
3 |
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings # we can replace huggingface with facetransformers
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
|
9 |
+
DATA_PATH = "$HOME/data/"
|
10 |
+
DB_FAISS_PATH = "$HOME/vectorstores/db_faiss"
|
11 |
+
|
12 |
+
#create vector database
|
13 |
def create_vector_db():
|
14 |
+
# WE can change .pdf with any other unstructured text format
|
15 |
+
loader = DirectoryLoader(DATA_PATH, glob="*.pdf", loader_cls = PyPDFLoader)
|
16 |
documents = loader.load()
|
17 |
|
|
|
18 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
19 |
+
|
20 |
texts = text_splitter.split_documents(documents)
|
21 |
|
22 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) # change to GPU if you want
|
23 |
+
|
24 |
+
# cuda is not supported in my MAC M1! SADLY.
|
25 |
|
|
|
26 |
db = FAISS.from_documents(texts, embeddings)
|
27 |
db.save_local(DB_FAISS_PATH)
|
28 |
|