|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.document_loaders import PyPDFLoader, DirectoryLoader |
|
|
|
|
|
from langchain.embeddings import HuggingFaceBgeEmbeddings |
|
from chainlit import cl |
|
from langchain.vectorstores import FAISS |
|
|
|
DATA_PATH = "data/" |
|
DB_FAISS_PATH = "vectorstores/db_faiss" |
|
|
|
|
|
def create_vector_db(): |
|
|
|
loader = DirectoryLoader(DATA_PATH, glob="*.pdf", loader_cls = PyPDFLoader) |
|
documents = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=50) |
|
|
|
texts = text_splitter.split_documents(documents) |
|
|
|
embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) |
|
|
|
|
|
|
|
db = FAISS.from_documents(texts, embeddings) |
|
db.save_local(DB_FAISS_PATH) |
|
|
|
if __name__ == "__main__": |
|
create_vector_db() |
|
cl.run() |
|
|