|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
|
|
|
|
|
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
from chainlit import cl
|
|
from langchain.vectorstores import FAISS
|
|
|
|
DATA_PATH = "data/"
|
|
DB_FAISS_PATH = "vectorstores/db_faiss"
|
|
|
|
|
|
def create_vector_db():
|
|
|
|
loader = DirectoryLoader(DATA_PATH, glob="*.pdf", loader_cls = PyPDFLoader)
|
|
documents = loader.load()
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=50)
|
|
|
|
texts = text_splitter.split_documents(documents)
|
|
|
|
embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
|
|
|
|
|
|
|
db = FAISS.from_documents(texts, embeddings)
|
|
db.save_local(DB_FAISS_PATH)
|
|
|
|
if __name__ == "__main__":
|
|
create_vector_db()
|
|
cl.run()
|
|
|