clara / app.py
axionable's picture
Upload folder using huggingface_hub
03d828b verified
# , get_pinecone_vectorstore, find_similar_vectors
from climateqa.engine.vectorstore import build_vectores_stores, get_PDF_Names_from_GCP, get_categories_files
from climateqa.engine.text_retriever import ClimateQARetriever
from climateqa.engine.rag import make_rag_chain
from climateqa.engine.llm import get_llm
from utils import create_user_id
from datetime import datetime
import json
import re
import gradio as gr
from sentence_transformers import CrossEncoder
reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
# Load environment variables in local mode
try:
from dotenv import load_dotenv
load_dotenv()
except Exception as e:
pass
# Set up Gradio Theme
theme = gr.themes.Soft(
primary_hue="yellow",
secondary_hue="orange",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif",
"system-ui", "sans-serif"],
)
init_prompt = ""
system_template = {
"role": "system",
"content": init_prompt,
}
user_id = create_user_id()
list_categorie = get_categories_files()
categories=list_categorie["AllCat"]
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc", "").strip()
for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup style="color:#FFC000 !important;">({
subpart})</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def serialize_docs(docs):
new_docs = []
for doc in docs:
new_doc = {}
new_doc["page_content"] = doc.page_content
new_doc["metadata"] = doc.metadata
new_docs.append(new_doc)
return new_docs
# Create vectorstore and retriever
vectorstore = build_vectores_stores("./sources")
llm = get_llm(provider="openai", max_tokens=1024, temperature=0.0)
async def chat(query, history, categories, src_nb_max, src_pertinence):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
(messages in gradio format, messages in langchain format, source documents)"""
print(f">> NEW QUESTION : {query} -> sources max:{src_nb_max} - pertience: {src_pertinence}")
filter = None
if len(categories):
filter={ "$or" : [] }
for cat in categories:
for fich in list_categorie[cat]:
filter["$or"].append({"ax_name": fich})
print( ">> Filter :" + str(filter) )
print( ">> nb sources :" + str(src_nb_max) )
print( ">> pertinence :" + str(src_pertinence) )
retriever = ClimateQARetriever(
vectorstore=vectorstore, sources=["Custom"], reports=[],
threshold=src_pertinence, k_total=src_nb_max, filter=filter
)
rag_chain = make_rag_chain(retriever, llm)
inputs = {"query": query, "audience": None}
result = rag_chain.astream_log(inputs)
path_reformulation = "/logs/reformulation/final_output"
path_keywords = "/logs/keywords/final_output"
path_retriever = "/logs/find_documents/final_output"
path_answer = "/logs/answer/streamed_output_str/-"
docs_html = ""
output_query = ""
output_language = ""
output_keywords = ""
gallery = []
try:
async for op in result:
op = op.ops[0]
if op['path'] == path_reformulation: # reforulated question
try:
output_language = op['value']["language"] # str
output_query = op["value"]["question"]
except Exception as e:
raise gr.Error(f"ClimateQ&A Error: {e} - The error has been noted, try another question and if the error remains, you can contact us :)")
if op["path"] == path_keywords:
try:
output_keywords = op['value']["keywords"] # str
output_keywords = " AND ".join(output_keywords)
except Exception as e:
pass
elif op['path'] == path_retriever: # documents
try:
docs = op['value']['docs'] # List[Document]
docs_html = []
for i, d in enumerate(docs, 1):
docs_html.append(make_html_source(d, i))
docs_html = "".join(docs_html)
except TypeError:
print("No documents found")
print("op: ", op)
continue
elif op['path'] == path_answer: # final answer
new_token = op['value'] # str
# time.sleep(0.01)
previous_answer = history[-1][1]
previous_answer = previous_answer if previous_answer is not None else ""
answer_yet = previous_answer + new_token
answer_yet = parse_output_llm_with_sources(answer_yet)
history[-1] = (query, answer_yet)
else:
continue
history = [tuple(x) for x in history]
yield history, docs_html, output_query, output_language, gallery, output_query, output_keywords
except Exception as e:
raise gr.Error(f"{e}")
timestamp = str(datetime.now().timestamp())
log_file = "logs/" + timestamp + ".json"
prompt = history[-1][0]
logs = {
"user_id": str(user_id),
"prompt": prompt,
"query": prompt,
"question": output_query,
"sources": ["Custom"],
"docs": serialize_docs(docs),
"answer": history[-1][1],
"time": timestamp,
}
#log_locally(log_file, logs)
yield history, docs_html, output_query, output_language, gallery, output_query, output_keywords
def make_html_source(source, i):
# Prépare le contenu HTML pour un fichier texte
text_content = source.page_content.strip()
meta = source.metadata
# Nom de la source
name = f"<b>Document {i}</b>"
# Contenu HTML de la carte
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<div>
<div style="float:right;width 10%;position:relative;top:0px">
<a href='{meta['ax_url']}' target='_blank'><img style="width:20px" src='/file/assets/download.png' /></a>
</div>
<div>
<h2>Extrait {i} (Score:{float(meta['similarity_score'])})</h2>
<h2> {meta['ax_name']} - Page {int(meta['ax_page'])}</h2>
</div>
</div>
<p>{text_content}</p>
</div>
<!-- <div class="card-footer">
<span>{name}</span>
</div> -->
</div>
"""
return card
def log_locally(file, logs):
# Convertit les logs en format JSON
logs_json = json.dumps(logs)
# Écrit les logs dans un fichier local
with open(file, 'w') as f:
f.write(logs_json)
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
init_prompt = """
Hello, I am Clara, an AI Assistant created by Axionable. My purpose is to answer your questions using the provided extracted passages, context, and guidelines.
❓ How to interact with Clara
Ask your question: You can ask me anything you want to know. I'll provide an answer based on the extracted passages and other relevant sources.
Response structure: I aim to provide clear and structured answers using the given data.
Guidelines: I follow specific guidelines to ensure that my responses are accurate and useful.
⚠️ Limitations
Though I do my best to help, there might be times when my responses are incorrect or incomplete. If that happens, please feel free to ask for more information or provide feedback to help improve my performance.
What would you like to know today?
"""
with gr.Blocks(title="CLARA", css="style.css", theme=theme, elem_id="main-component", elem_classes="ax_background") as demo:
gr.HTML("""
<img style="width:100px" src="file/assets/axionable.svg"/>
""", elem_classes="logo-axio ")
# TAB Clara
with gr.Tab("CLARA"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[(None, init_prompt)],
show_copy_button=True, show_label=False, elem_id="chatbot", layout="panel",
avatar_images=(None, "assets/logo4.png"))
with gr.Row(elem_id="input-message"):
textbox = gr.Textbox(placeholder="Posez votre question", show_label=False,
scale=7, lines=1, interactive=True, elem_id="input-textbox")
with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
# with gr.Column(scale=1, elem_id="tab-citations"):
# gr.HTML("<p>Sources</p>")
# slider = gr.Slider(1, 10, value=src_nb_max, step=1, label="nb max", interactive=True, elem_id="source-nb-max")
# slider_p = gr.Slider(0.0, 1.0, value=src_pertinence, step=0.01, label="pertinence", interactive=True, elem_id="source-pertinence")
# sources_textbox = gr.HTML(
# show_label=False, elem_id="sources-textbox")
# docs_textbox = gr.State("")
# l'object tabs est necessaire actuellement
# J'ai l'impression qu'il est utiliser pour freezre les contenu des tabs
# pendant que l'ia gènère une reponse ..
with gr.Tabs() as tabs:
# None
with gr.Tab("sources"):
sources_textbox = gr.HTML(
show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
with gr.Tab("filtres"):
cat_sel = gr.CheckboxGroup(categories,label="Catégories")
slider = gr.Slider(1, 10, value=7, step=1, label="nb max", interactive=True, elem_id="source-nb-max")
slider_p = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="pertinence", interactive=True, elem_id="source-pertinence")
# TAB A propos
with gr.Tab("À propos", elem_classes="max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
("CLARA (Climate LLM for Adaptation & Risks Answers) by [Axionable](https://www.axionable.com/)"
"– Fork de [ClimateQ&A](https://huggingface.co/spaces/Ekimetrics/climate-question-answering/tree/main)"), elem_classes="a-propos")
# # TAB Configuration
# with gr.Tab("Configuration"):
#
# with gr.Row(elem_id="config-row"):
# with gr.Column(scale=1):
#
# for pdfName in get_PDF_Names_from_GCP():
# gr.Markdown( pdfName, elem_classes="a-propos")
def start_chat(query, history):
history = history + [(query, None)]
history = [tuple(x) for x in history]
return (gr.update(interactive=False), gr.update(selected=1), history)
def finish_chat():
return (gr.update(interactive=True, value=""))
(textbox
.submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
.then(chat, [textbox, chatbot, cat_sel, slider, slider_p], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_textbox")
.then(finish_chat, None, [textbox], api_name="finish_chat_textbox")
)
demo.queue()
demo.launch(allowed_paths=["assets/download.png",
"assets/logo4.png",
"assets/axionable.svg"],favicon_path="assets/logo4.png")