Spaces:
Runtime error
Runtime error
jesse-lopez
commited on
Commit
•
e982ae0
1
Parent(s):
64643d4
test creation of app
Browse files- app.py +73 -10
- create_spectrograms.py +106 -0
- fish-sounds-resnet101-balanced-samples-n50 +1 -0
- requirements.txt +1 -1
- sample-0002.wav +0 -0
- sample-20088.wav +0 -0
- sample-2990.wav +0 -0
app.py
CHANGED
@@ -1,16 +1,79 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
import
|
|
|
|
|
7 |
import gradio as gr
|
8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
|
14 |
|
15 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
iface.launch()
|
|
|
1 |
+
"""App to demonstrate fish sound classifier.
|
2 |
+
|
3 |
+
Includes code to create spectrograms from https://github.com/axiom-data-science/project-classify-fish-sounds
|
4 |
+
which was copied to this dir and slightly modified for in-memory buffer because the archive repo is not pip installable.
|
5 |
+
"""
|
6 |
+
import io
|
7 |
+
|
8 |
+
import fastai.vision.all as fai_vision
|
9 |
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from create_spectrograms import (
|
14 |
+
FFTConfig,
|
15 |
+
load_wav,
|
16 |
+
calc_stft,
|
17 |
+
plot_spec,
|
18 |
+
fish_filter
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
MODEL = fai_vision.load_learner('fish-sounds-resnet101-balanced-samples-n50')
|
23 |
+
LABELS = {
|
24 |
+
0: 'No call',
|
25 |
+
1: 'Black grouper call 1',
|
26 |
+
2: 'Black grouper call 2',
|
27 |
+
3: 'Black grouper grunt',
|
28 |
+
4: 'Unidentified sound',
|
29 |
+
5: 'Red grouper 1',
|
30 |
+
6: 'Red grouper 2',
|
31 |
+
7: 'Red hind 1',
|
32 |
+
8: 'Red hind 2',
|
33 |
+
9: 'Red hind 3',
|
34 |
+
10: 'Goliath grouper',
|
35 |
+
11: 'Goliath grouper multi-phase'
|
36 |
+
}
|
37 |
+
FFT_CONFIG = FFTConfig()
|
38 |
+
|
39 |
+
|
40 |
+
def classify_audio(inp, model=MODEL, labels=LABELS):
|
41 |
+
with Spectrogram(inp) as spec_buffer:
|
42 |
+
# Open spec from in-memory file as image
|
43 |
+
image_buffer = Image.open(spec_buffer)
|
44 |
+
# Cast to array, skip alpha channel
|
45 |
+
image_arr = np.array(image_buffer)[:, :, :3]
|
46 |
+
|
47 |
+
# Predict!
|
48 |
+
results = model.predict(image_arr)
|
49 |
+
# Return class labels and confidence value
|
50 |
+
confidences = {labels[i]: float(results[2][i]) for i in range(len(labels))}
|
51 |
+
|
52 |
+
return image_buffer, confidences
|
53 |
+
|
54 |
+
|
55 |
+
class Spectrogram:
|
56 |
+
|
57 |
+
def __init__(self, inp, fft_config=FFT_CONFIG):
|
58 |
+
self.inp = inp
|
59 |
+
self.buffer = io.BytesIO()
|
60 |
+
self.fft_config = fft_config
|
61 |
|
62 |
+
def __enter__(self):
|
63 |
+
plot_spec(self.inp, self.buffer, self.fft_config)
|
64 |
+
return self.buffer
|
65 |
|
66 |
+
def __exit__(self, exc_typ, exc_value, exc_traceback):
|
67 |
+
self.buffer.close()
|
68 |
|
69 |
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=classify_audio,
|
72 |
+
inputs=gr.inputs.Audio(source="upload", type="numpy"),
|
73 |
+
outputs=[
|
74 |
+
gr.outputs.Image(),
|
75 |
+
gr.outputs.Label(num_top_classes=3),
|
76 |
+
],
|
77 |
+
examples=["sample-0002.wav", "sample-20088.wav", "sample-2990.wav"]
|
78 |
+
)
|
79 |
iface.launch()
|
create_spectrograms.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Create spectrograms from audio files using matplotlib"""
|
2 |
+
import logging
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Tuple, Union
|
6 |
+
|
7 |
+
import matplotlib as mpl
|
8 |
+
mpl.use('Agg')
|
9 |
+
import librosa
|
10 |
+
import librosa.display
|
11 |
+
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import numpy as np
|
14 |
+
import scipy.signal as signal
|
15 |
+
|
16 |
+
logging.basicConfig(format='%(asctime)s: %(message)s', level=logging.INFO)
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class FFTConfig():
|
21 |
+
n_fft: Union[int, None] = 2**12
|
22 |
+
win_length: Union[int, None] = None
|
23 |
+
hop_length: int = 512
|
24 |
+
sr: int = 22_050
|
25 |
+
db: bool = False
|
26 |
+
mel: bool = False
|
27 |
+
fmin: int = 50
|
28 |
+
fmax: int = 10_000
|
29 |
+
y_axis: str = 'linear'
|
30 |
+
denoise: Union[str, None] = None
|
31 |
+
pcen: bool = False
|
32 |
+
cmap: str = 'magma'
|
33 |
+
n_mels: int = 128
|
34 |
+
vmin: Union[float, None] = None
|
35 |
+
vmax: Union[float, None] = None
|
36 |
+
bandpass: bool = True
|
37 |
+
ylim: Union[Tuple[float, float], None] = (0, 512)
|
38 |
+
|
39 |
+
def load_wav(fpath):
|
40 |
+
y, sr = librosa.load(fpath)
|
41 |
+
audio, _ = librosa.effects.trim(y)
|
42 |
+
|
43 |
+
return audio, sr
|
44 |
+
|
45 |
+
|
46 |
+
def calc_stft(audio, fft_config):
|
47 |
+
stft = librosa.stft(audio, n_fft=fft_config.n_fft, hop_length=fft_config.hop_length, win_length=fft_config.win_length)
|
48 |
+
return np.abs(stft)
|
49 |
+
|
50 |
+
|
51 |
+
def plot_spec(inp, output, fft_config: FFTConfig):
|
52 |
+
# Audio returns sr and audio! (opposite of librosa)
|
53 |
+
sr, audio = inp
|
54 |
+
fft_config.sr = sr
|
55 |
+
if fft_config.bandpass:
|
56 |
+
audio = fish_filter(audio, fs=sr)
|
57 |
+
|
58 |
+
stft = calc_stft(audio, fft_config)
|
59 |
+
|
60 |
+
if fft_config.pcen:
|
61 |
+
# Scale PCEN: https://librosa.org/doc/latest/generated/librosa.pcen.html?highlight=pcen#librosa.pcen
|
62 |
+
stft = librosa.pcen(stft * (2**31), sr=fft_config.sr, hop_length=fft_config.hop_length)
|
63 |
+
fft_config.db = True
|
64 |
+
|
65 |
+
if fft_config.mel:
|
66 |
+
stft = librosa.feature.melspectrogram(
|
67 |
+
y=audio,
|
68 |
+
sr=fft_config.sr,
|
69 |
+
n_mels=fft_config.n_mels,
|
70 |
+
fmin=fft_config.fmin,
|
71 |
+
fmax=fft_config.fmax
|
72 |
+
)
|
73 |
+
# Mel is in db
|
74 |
+
fft_config.db = True
|
75 |
+
|
76 |
+
if fft_config.db:
|
77 |
+
stft = librosa.amplitude_to_db(stft, ref=np.max)
|
78 |
+
|
79 |
+
fig, ax = plt.subplots(1, 1)
|
80 |
+
_ = librosa.display.specshow(
|
81 |
+
stft,
|
82 |
+
sr=fft_config.sr,
|
83 |
+
hop_length=fft_config.hop_length,
|
84 |
+
x_axis='time',
|
85 |
+
y_axis=fft_config.y_axis,
|
86 |
+
fmin=fft_config.fmin,
|
87 |
+
fmax=fft_config.fmax,
|
88 |
+
cmap=fft_config.cmap,
|
89 |
+
ax=ax,
|
90 |
+
vmin=fft_config.vmin,
|
91 |
+
vmax=fft_config.vmax
|
92 |
+
)
|
93 |
+
ax.set_axis_off()
|
94 |
+
if fft_config.ylim is not None:
|
95 |
+
ax.set_ylim(fft_config.ylim)
|
96 |
+
|
97 |
+
if output:
|
98 |
+
fig.savefig(output, bbox_inches='tight', pad_inches=0)
|
99 |
+
plt.close(fig=fig)
|
100 |
+
|
101 |
+
plt.close('all')
|
102 |
+
|
103 |
+
|
104 |
+
def fish_filter(call, low=50, high=512, order=8, fs=22_050):
|
105 |
+
sos = signal.butter(order, [low, high], 'bandpass', output='sos', fs=fs)
|
106 |
+
return signal.sosfilt(sos, call)
|
fish-sounds-resnet101-balanced-samples-n50
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../models/fish-sounds-resnet101-balanced-samples-n50
|
requirements.txt
CHANGED
@@ -3,4 +3,4 @@ fastai
|
|
3 |
matplotlib
|
4 |
pandas
|
5 |
pydub
|
6 |
-
|
|
|
3 |
matplotlib
|
4 |
pandas
|
5 |
pydub
|
6 |
+
scipy
|
sample-0002.wav
ADDED
Binary file (221 kB). View file
|
|
sample-20088.wav
ADDED
Binary file (328 kB). View file
|
|
sample-2990.wav
ADDED
Binary file (213 kB). View file
|
|