|
import tensorflow as tf
|
|
|
|
from .attention import WindowAttention
|
|
from .drop import DropPath
|
|
from .window import window_partition, window_reverse
|
|
from .feature import Mlp, FeatExtract
|
|
|
|
|
|
@tf.keras.utils.register_keras_serializable(package="gcvit")
|
|
class GCViTBlock(tf.keras.layers.Layer):
|
|
def __init__(self, window_size, num_heads, global_query, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0.,
|
|
attn_drop=0., path_drop=0., act_layer='gelu', layer_scale=None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.window_size = window_size
|
|
self.num_heads = num_heads
|
|
self.global_query = global_query
|
|
self.mlp_ratio = mlp_ratio
|
|
self.qkv_bias = qkv_bias
|
|
self.qk_scale = qk_scale
|
|
self.drop = drop
|
|
self.attn_drop = attn_drop
|
|
self.path_drop = path_drop
|
|
self.act_layer = act_layer
|
|
self.layer_scale = layer_scale
|
|
|
|
def build(self, input_shape):
|
|
B, H, W, C = input_shape[0]
|
|
self.norm1 = tf.keras.layers.LayerNormalization(axis=-1, epsilon=1e-05, name='norm1')
|
|
self.attn = WindowAttention(window_size=self.window_size,
|
|
num_heads=self.num_heads,
|
|
global_query=self.global_query,
|
|
qkv_bias=self.qkv_bias,
|
|
qk_scale=self.qk_scale,
|
|
attn_dropout=self.attn_drop,
|
|
proj_dropout=self.drop,
|
|
name='attn')
|
|
self.drop_path1 = DropPath(self.path_drop)
|
|
self.drop_path2 = DropPath(self.path_drop)
|
|
self.norm2 = tf.keras.layers.LayerNormalization(axis=-1, epsilon=1e-05, name='norm2')
|
|
self.mlp = Mlp(hidden_features=int(C * self.mlp_ratio), dropout=self.drop, act_layer=self.act_layer, name='mlp')
|
|
if self.layer_scale is not None:
|
|
self.gamma1 = self.add_weight(
|
|
'gamma1',
|
|
shape=[C],
|
|
initializer=tf.keras.initializers.Constant(self.layer_scale),
|
|
trainable=True,
|
|
dtype=self.dtype)
|
|
self.gamma2 = self.add_weight(
|
|
'gamma2',
|
|
shape=[C],
|
|
initializer=tf.keras.initializers.Constant(self.layer_scale),
|
|
trainable=True,
|
|
dtype=self.dtype)
|
|
else:
|
|
self.gamma1 = 1.0
|
|
self.gamma2 = 1.0
|
|
self.num_windows = int(H // self.window_size) * int(W // self.window_size)
|
|
super().build(input_shape)
|
|
|
|
def call(self, inputs, **kwargs):
|
|
if self.global_query:
|
|
inputs, q_global = inputs
|
|
else:
|
|
inputs = inputs[0]
|
|
B, H, W, C = tf.unstack(tf.shape(inputs), num=4)
|
|
x = self.norm1(inputs)
|
|
|
|
x = window_partition(x, self.window_size)
|
|
|
|
x = tf.reshape(x, shape=[-1, self.window_size * self.window_size, C])
|
|
|
|
if self.global_query:
|
|
x = self.attn([x, q_global])
|
|
else:
|
|
x = self.attn([x])
|
|
|
|
x = window_reverse(x, self.window_size, H, W, C)
|
|
|
|
x = inputs + self.drop_path1(x * self.gamma1)
|
|
x = x + self.drop_path2(self.gamma2 * self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
def get_config(self):
|
|
config = super().get_config()
|
|
config.update({
|
|
'window_size': self.window_size,
|
|
'num_heads': self.num_heads,
|
|
'global_query': self.global_query,
|
|
'mlp_ratio': self.mlp_ratio,
|
|
'qkv_bias': self.qkv_bias,
|
|
'qk_scale': self.qk_scale,
|
|
'drop': self.drop,
|
|
'attn_drop': self.attn_drop,
|
|
'path_drop': self.path_drop,
|
|
'act_layer': self.act_layer,
|
|
'layer_scale': self.layer_scale,
|
|
'num_windows': self.num_windows,
|
|
})
|
|
return config |