Spaces:
Sleeping
Sleeping
awpbash
commited on
Commit
Β·
c7935e1
1
Parent(s):
01cca9a
first
Browse files- .gitattributes +1 -0
- app.py +269 -0
- images/image1.png +3 -0
- images/image2.png +3 -0
- images/image3.png +3 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import io
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import sys
|
| 8 |
+
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
| 9 |
+
from geoclip import GeoCLIP
|
| 10 |
+
import tempfile
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Set device
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
|
| 16 |
+
# Global model variables
|
| 17 |
+
processor, gdino_model, ocr_model, geo_model = None, None, None, None
|
| 18 |
+
|
| 19 |
+
def load_image(image_pil):
|
| 20 |
+
"""
|
| 21 |
+
Converts a PIL image to a BGR NumPy array.
|
| 22 |
+
"""
|
| 23 |
+
img_bgr = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
| 24 |
+
if img_bgr is None:
|
| 25 |
+
raise ValueError("Could not decode image.")
|
| 26 |
+
return img_bgr
|
| 27 |
+
|
| 28 |
+
def load_gdino():
|
| 29 |
+
"""
|
| 30 |
+
Loads and returns the Grounding DINO model and processor.
|
| 31 |
+
"""
|
| 32 |
+
global processor, gdino_model
|
| 33 |
+
if gdino_model is None:
|
| 34 |
+
print("Loading Grounding DINO model...")
|
| 35 |
+
model_id = "IDEA-Research/grounding-dino-base"
|
| 36 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 37 |
+
gdino_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
|
| 38 |
+
print("Grounding DINO model loaded.")
|
| 39 |
+
return processor, gdino_model
|
| 40 |
+
|
| 41 |
+
def load_geoclip():
|
| 42 |
+
"""
|
| 43 |
+
Loads and returns the GeoCLIP model.
|
| 44 |
+
"""
|
| 45 |
+
global geo_model
|
| 46 |
+
if geo_model is None:
|
| 47 |
+
print("Loading GeoCLIP model...")
|
| 48 |
+
geo_model = GeoCLIP()
|
| 49 |
+
print("GeoCLIP model loaded.")
|
| 50 |
+
return geo_model
|
| 51 |
+
|
| 52 |
+
def detect_gdino(img_pil, processor, model, box_threshold, text_threshold, queries):
|
| 53 |
+
"""
|
| 54 |
+
Performs object detection using Grounding DINO.
|
| 55 |
+
"""
|
| 56 |
+
if not queries:
|
| 57 |
+
return np.empty((0, 4), dtype=int)
|
| 58 |
+
|
| 59 |
+
text = ". ".join([q.lower() for q in queries]) + "."
|
| 60 |
+
inputs = processor(images=img_pil, text=text, return_tensors="pt").to(device)
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
|
| 65 |
+
results = processor.post_process_grounded_object_detection(
|
| 66 |
+
outputs,
|
| 67 |
+
inputs.input_ids,
|
| 68 |
+
box_threshold=box_threshold,
|
| 69 |
+
text_threshold=text_threshold,
|
| 70 |
+
target_sizes=[img_pil.size[::-1]]
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
boxes = results[0]["boxes"].cpu().numpy()
|
| 74 |
+
return boxes
|
| 75 |
+
|
| 76 |
+
def try_ocr():
|
| 77 |
+
"""
|
| 78 |
+
Attempts to load PaddleOCR. Returns the model or None if it fails.
|
| 79 |
+
"""
|
| 80 |
+
global ocr_model
|
| 81 |
+
if ocr_model is None:
|
| 82 |
+
try:
|
| 83 |
+
from paddleocr import PaddleOCR
|
| 84 |
+
print("Loading PaddleOCR...")
|
| 85 |
+
ocr_model = PaddleOCR(use_angle_cls=True, lang="en", show_log=False)
|
| 86 |
+
print("PaddleOCR loaded.")
|
| 87 |
+
except ImportError:
|
| 88 |
+
print("PaddleOCR not found. Skipping OCR detection.")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
print(f"Error loading PaddleOCR: {e}. Skipping OCR detection.")
|
| 91 |
+
return ocr_model
|
| 92 |
+
|
| 93 |
+
def detect_ocr_boxes(image_bgr, ocr):
|
| 94 |
+
"""
|
| 95 |
+
Detects text bounding boxes using PaddleOCR.
|
| 96 |
+
"""
|
| 97 |
+
results = ocr.ocr(image_bgr, cls=True)
|
| 98 |
+
boxes = []
|
| 99 |
+
if results and results[0]:
|
| 100 |
+
for line in results[0]:
|
| 101 |
+
points = line[0]
|
| 102 |
+
if points:
|
| 103 |
+
x_coords = [p[0] for p in points]
|
| 104 |
+
y_coords = [p[1] for p in points]
|
| 105 |
+
x_min, x_max = min(x_coords), max(x_coords)
|
| 106 |
+
y_min, y_max = min(y_coords), max(y_coords)
|
| 107 |
+
boxes.append([x_min, y_min, x_max, y_max])
|
| 108 |
+
return np.array(boxes)
|
| 109 |
+
|
| 110 |
+
def union_masks(image_shape, box_lists):
|
| 111 |
+
"""
|
| 112 |
+
Creates a single mask from a list of bounding box arrays.
|
| 113 |
+
"""
|
| 114 |
+
mask = np.zeros((image_shape[0], image_shape[1]), dtype=np.uint8)
|
| 115 |
+
for boxes in box_lists:
|
| 116 |
+
if boxes is not None and len(boxes) > 0:
|
| 117 |
+
for box in boxes:
|
| 118 |
+
x_min, y_min, x_max, y_max = [int(v) for v in box]
|
| 119 |
+
mask[y_min:y_max, x_min:x_max] = 255
|
| 120 |
+
return mask
|
| 121 |
+
|
| 122 |
+
def redact(image, mask, method="blur", blur_ksize=151, mosaic_scale=0.06):
|
| 123 |
+
"""
|
| 124 |
+
Applies the chosen redaction method (blur or pixelate) to the image based on the mask.
|
| 125 |
+
"""
|
| 126 |
+
if method == "blur":
|
| 127 |
+
if blur_ksize % 2 == 0:
|
| 128 |
+
blur_ksize += 1
|
| 129 |
+
blurred = cv2.GaussianBlur(image, (blur_ksize, blur_ksize), 0)
|
| 130 |
+
return np.where(mask[:, :, None] == 255, blurred, image)
|
| 131 |
+
elif method == "pixelate":
|
| 132 |
+
h, w = image.shape[:2]
|
| 133 |
+
small_h = int(h * mosaic_scale)
|
| 134 |
+
small_w = int(w * mosaic_scale)
|
| 135 |
+
if small_h <= 0: small_h = 1
|
| 136 |
+
if small_w <= 0: small_w = 1
|
| 137 |
+
|
| 138 |
+
resized = cv2.resize(image, (small_w, small_h), interpolation=cv2.INTER_LINEAR)
|
| 139 |
+
pixelated = cv2.resize(resized, (w, h), interpolation=cv2.INTER_NEAREST)
|
| 140 |
+
return np.where(mask[:, :, None] == 255, pixelated, image)
|
| 141 |
+
return image
|
| 142 |
+
|
| 143 |
+
# Gradio processing function
|
| 144 |
+
def process_image(image_pil, redaction_targets, redaction_method):
|
| 145 |
+
"""
|
| 146 |
+
Main function for the Gradio interface.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
image_pil (PIL.Image): The input image.
|
| 150 |
+
redaction_targets (list): A list of strings representing the items to redact.
|
| 151 |
+
redaction_method (str): The method to use for redaction ('blur' or 'pixelate').
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
tuple: A tuple containing the path to the redacted image file and a text string with detection results.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
# Load models
|
| 158 |
+
processor, gdino_model = load_gdino()
|
| 159 |
+
ocr_model = try_ocr()
|
| 160 |
+
geo_model = load_geoclip()
|
| 161 |
+
|
| 162 |
+
if image_pil is None:
|
| 163 |
+
return None, "Please upload an image."
|
| 164 |
+
|
| 165 |
+
img_bgr = load_image(image_pil)
|
| 166 |
+
|
| 167 |
+
# Define queries based on checkboxes
|
| 168 |
+
queries = []
|
| 169 |
+
if "Flags" in redaction_targets:
|
| 170 |
+
queries.extend(["flag", "country flags", "state flags"])
|
| 171 |
+
if "Signs" in redaction_targets:
|
| 172 |
+
queries.extend(["street name sign", "road name sign"])
|
| 173 |
+
if 'Faces' in redaction_targets:
|
| 174 |
+
queries.extend(["human faces", "faces", "people faces", "child faces", "human head", "people head"])
|
| 175 |
+
if 'Building/Flat Numbers' in redaction_targets:
|
| 176 |
+
queries.extend(["housing block number", "flat number", "level number", "floor number", "block number"])
|
| 177 |
+
|
| 178 |
+
# Detect boxes
|
| 179 |
+
boxes_gd = detect_gdino(image_pil, processor, gdino_model, 0.25, 0.20, queries)
|
| 180 |
+
|
| 181 |
+
# Detect OCR boxes if OCR is enabled
|
| 182 |
+
boxes_ocr = detect_ocr_boxes(img_bgr, ocr_model) if 'Text' in redaction_targets and ocr_model else np.empty((0, 4), dtype=int)
|
| 183 |
+
|
| 184 |
+
# Create a union mask
|
| 185 |
+
mask = union_masks(img_bgr.shape, [boxes_gd, boxes_ocr])
|
| 186 |
+
|
| 187 |
+
# Redact the image
|
| 188 |
+
redacted_image = redact(img_bgr, mask, method=redaction_method)
|
| 189 |
+
|
| 190 |
+
# Run GeoCLIP prediction
|
| 191 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
| 192 |
+
image_pil.save(tmp.name)
|
| 193 |
+
tmp_path = tmp.name
|
| 194 |
+
|
| 195 |
+
try:
|
| 196 |
+
top_pred_gps, top_pred_prob = geo_model.predict(tmp_path, top_k=1)
|
| 197 |
+
|
| 198 |
+
gps = [round(item, 3) for item in top_pred_gps.tolist()[0]]
|
| 199 |
+
prob = round(top_pred_prob.tolist()[0] * 100, 3)
|
| 200 |
+
finally:
|
| 201 |
+
os.unlink(tmp_path)
|
| 202 |
+
|
| 203 |
+
# Convert BGR to RGB for Gradio display and save to a temporary file
|
| 204 |
+
redacted_image_rgb = cv2.cvtColor(redacted_image, cv2.COLOR_BGR2RGB)
|
| 205 |
+
temp_img_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name
|
| 206 |
+
Image.fromarray(redacted_image_rgb).save(temp_img_path)
|
| 207 |
+
|
| 208 |
+
# Create the text output
|
| 209 |
+
num_gd_boxes = len(boxes_gd)
|
| 210 |
+
num_ocr_boxes = len(boxes_ocr)
|
| 211 |
+
total_boxes = num_gd_boxes + num_ocr_boxes
|
| 212 |
+
|
| 213 |
+
result_text = f"Redaction Complete! π―\n\nDetected and redacted {total_boxes} items.\n"
|
| 214 |
+
if num_gd_boxes > 0:
|
| 215 |
+
result_text += f" - {num_gd_boxes} item(s) detected by Grounding DINO.\n"
|
| 216 |
+
if num_ocr_boxes > 0:
|
| 217 |
+
result_text += f" - {num_ocr_boxes} item(s) detected by OCR.\n"
|
| 218 |
+
|
| 219 |
+
result_text += f"\n--- Approximate GPS Prediction ---\n"
|
| 220 |
+
result_text += f"Predicted GPS: Latitude {gps[0]}, Longitude {gps[1]}\n"
|
| 221 |
+
result_text += f"Confidence: {prob}%\n"
|
| 222 |
+
|
| 223 |
+
return temp_img_path, result_text
|
| 224 |
+
|
| 225 |
+
# Define Gradio Interface
|
| 226 |
+
with gr.Blocks() as demo:
|
| 227 |
+
gr.Markdown("# Image Redaction and Geolocation Tool π")
|
| 228 |
+
gr.Markdown(
|
| 229 |
+
"Upload an image and select the categories you wish to redact. The tool will "
|
| 230 |
+
"automatically detect and obscure the selected items using a blur or pixelate effect. "
|
| 231 |
+
"It will also provide a privacy-preserving approximate GPS location prediction using GeoCLIP."
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
with gr.Row():
|
| 235 |
+
with gr.Column():
|
| 236 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 237 |
+
redaction_targets = gr.CheckboxGroup(
|
| 238 |
+
choices=["Flags", "Signs", "Faces", "Building/Flat Numbers", "Text"],
|
| 239 |
+
label="Select Redaction Targets"
|
| 240 |
+
)
|
| 241 |
+
redaction_method = gr.Radio(
|
| 242 |
+
choices=["blur", "pixelate"],
|
| 243 |
+
label="Redaction Method",
|
| 244 |
+
value="blur"
|
| 245 |
+
)
|
| 246 |
+
process_button = gr.Button("Redact & Predict")
|
| 247 |
+
|
| 248 |
+
with gr.Column():
|
| 249 |
+
image_output = gr.Image(label="Redacted Image") # Changed from gr.Image to gr.File
|
| 250 |
+
result_output = gr.Textbox(label="Results", interactive=False)
|
| 251 |
+
|
| 252 |
+
process_button.click(
|
| 253 |
+
fn=process_image,
|
| 254 |
+
inputs=[image_input, redaction_targets, redaction_method],
|
| 255 |
+
outputs=[image_output, result_output]
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
gr.Examples(
|
| 259 |
+
examples=[
|
| 260 |
+
["images/image2.png", ["Flags"], "blur"],
|
| 261 |
+
["images/image1.png", ["Signs"], "pixelate"]
|
| 262 |
+
],
|
| 263 |
+
inputs=[image_input, redaction_targets, redaction_method],
|
| 264 |
+
outputs=[image_output, result_output],
|
| 265 |
+
fn=process_image,
|
| 266 |
+
cache_examples=False
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
demo.launch()
|
images/image1.png
ADDED
|
Git LFS Details
|
images/image2.png
ADDED
|
Git LFS Details
|
images/image3.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
opencv-python
|
| 5 |
+
numpy
|
| 6 |
+
Pillow
|
| 7 |
+
paddleocr
|
| 8 |
+
geoclip
|