Spaces:
Build error
Build error
import os | |
import gc | |
from pathlib import Path | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig | |
from TTS.utils.manage import ModelManager | |
import shutil | |
def train_gpt(custom_model,version, language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path, max_audio_length=255995): | |
# Logging parameters | |
RUN_NAME = "GPT_XTTS_FT" | |
PROJECT_NAME = "XTTS_trainer" | |
DASHBOARD_LOGGER = "tensorboard" | |
LOGGER_URI = None | |
# print(f"XTTS version = {version}") | |
# Set here the path that the checkpoints will be saved. Default: ./run/training/ | |
OUT_PATH = os.path.join(output_path, "run", "training") | |
# Training Parameters | |
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False | |
START_WITH_EVAL = False # if True it will star with evaluation | |
BATCH_SIZE = batch_size # set here the batch size | |
GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps | |
# Define here the dataset that you want to use for the fine-tuning on. | |
config_dataset = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="ft_dataset", | |
path=os.path.dirname(train_csv), | |
meta_file_train=train_csv, | |
meta_file_val=eval_csv, | |
language=language, | |
) | |
# Add here the configs of the datasets | |
DATASETS_CONFIG_LIST = [config_dataset] | |
# Define the path where XTTS v2.0.1 files will be downloaded | |
CHECKPOINTS_OUT_PATH = os.path.join(Path.cwd(), "base_models",f"{version}") | |
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) | |
# DVAE files | |
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth" | |
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth" | |
# Set the path to the downloaded files | |
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK)) | |
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK)) | |
# download DVAE files if needed | |
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): | |
print(" > Downloading DVAE files!") | |
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) | |
# Download XTTS v2.0 checkpoint if needed | |
TOKENIZER_FILE_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/vocab.json" | |
XTTS_CHECKPOINT_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/model.pth" | |
XTTS_CONFIG_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/config.json" | |
XTTS_SPEAKER_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/speakers_xtts.pth" | |
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning. | |
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file | |
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file | |
XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) # config.json file | |
XTTS_SPEAKER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_SPEAKER_LINK)) # speakers_xtts.pth file | |
# download XTTS v2.0 files if needed | |
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT): | |
print(f" > Downloading XTTS v{version} files!") | |
ModelManager._download_model_files( | |
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK, XTTS_CONFIG_LINK,XTTS_SPEAKER_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True | |
) | |
# Transfer this files to ready folder | |
READY_MODEL_PATH = os.path.join(output_path,"ready") | |
if not os.path.exists(READY_MODEL_PATH): | |
os.makedirs(READY_MODEL_PATH) | |
NEW_TOKENIZER_FILE = os.path.join(READY_MODEL_PATH, "vocab.json") | |
# NEW_XTTS_CHECKPOINT = os.path.join(READY_MODEL_PATH, "model.pth") | |
NEW_XTTS_CONFIG_FILE = os.path.join(READY_MODEL_PATH, "config.json") | |
NEW_XTTS_SPEAKER_FILE = os.path.join(READY_MODEL_PATH, "speakers_xtts.pth") | |
shutil.copy(TOKENIZER_FILE, NEW_TOKENIZER_FILE) | |
# shutil.copy(XTTS_CHECKPOINT, os.path.join(READY_MODEL_PATH, "model.pth")) | |
shutil.copy(XTTS_CONFIG_FILE, NEW_XTTS_CONFIG_FILE) | |
shutil.copy(XTTS_SPEAKER_FILE, NEW_XTTS_SPEAKER_FILE) | |
# Use from ready folder | |
TOKENIZER_FILE = NEW_TOKENIZER_FILE # vocab.json file | |
# XTTS_CHECKPOINT = NEW_XTTS_CHECKPOINT # model.pth file | |
XTTS_CONFIG_FILE = NEW_XTTS_CONFIG_FILE # config.json file | |
XTTS_SPEAKER_FILE = NEW_XTTS_SPEAKER_FILE # speakers_xtts.pth file | |
if custom_model != "": | |
if os.path.exists(custom_model) and custom_model.endswith('.pth'): | |
XTTS_CHECKPOINT = custom_model | |
print(f" > Loading custom model: {XTTS_CHECKPOINT}") | |
else: | |
print(" > Error: The specified custom model is not a valid .pth file path.") | |
num_workers = 8 | |
if language == "ja": | |
num_workers = 0 | |
# init args and config | |
model_args = GPTArgs( | |
max_conditioning_length=132300, # 6 secs | |
min_conditioning_length=66150, # 3 secs | |
debug_loading_failures=False, | |
max_wav_length=max_audio_length, # ~11.6 seconds | |
max_text_length=200, | |
mel_norm_file=MEL_NORM_FILE, | |
dvae_checkpoint=DVAE_CHECKPOINT, | |
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune | |
tokenizer_file=TOKENIZER_FILE, | |
gpt_num_audio_tokens=1026, | |
gpt_start_audio_token=1024, | |
gpt_stop_audio_token=1025, | |
gpt_use_masking_gt_prompt_approach=True, | |
gpt_use_perceiver_resampler=True, | |
) | |
# define audio config | |
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) | |
# training parameters config | |
config = GPTTrainerConfig( | |
epochs=num_epochs, | |
output_path=OUT_PATH, | |
model_args=model_args, | |
run_name=RUN_NAME, | |
project_name=PROJECT_NAME, | |
run_description=""" | |
GPT XTTS training | |
""", | |
dashboard_logger=DASHBOARD_LOGGER, | |
logger_uri=LOGGER_URI, | |
audio=audio_config, | |
batch_size=BATCH_SIZE, | |
batch_group_size=48, | |
eval_batch_size=BATCH_SIZE, | |
num_loader_workers=num_workers, | |
eval_split_max_size=256, | |
print_step=50, | |
plot_step=100, | |
log_model_step=100, | |
save_step=1000, | |
save_n_checkpoints=1, | |
save_checkpoints=True, | |
# target_loss="loss", | |
print_eval=False, | |
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters. | |
optimizer="AdamW", | |
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, | |
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, | |
lr=5e-06, # learning rate | |
lr_scheduler="MultiStepLR", | |
# it was adjusted accordly for the new step scheme | |
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1}, | |
test_sentences=[], | |
) | |
# init the model from config | |
model = GPTTrainer.init_from_config(config) | |
# load training samples | |
train_samples, eval_samples = load_tts_samples( | |
DATASETS_CONFIG_LIST, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs( | |
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter | |
skip_train_epoch=False, | |
start_with_eval=START_WITH_EVAL, | |
grad_accum_steps=GRAD_ACUMM_STEPS, | |
), | |
config, | |
output_path=OUT_PATH, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |
# get the longest text audio file to use as speaker reference | |
samples_len = [len(item["text"].split(" ")) for item in train_samples] | |
longest_text_idx = samples_len.index(max(samples_len)) | |
speaker_ref = train_samples[longest_text_idx]["audio_file"] | |
trainer_out_path = trainer.output_path | |
# deallocate VRAM and RAM | |
del model, trainer, train_samples, eval_samples | |
gc.collect() | |
return XTTS_SPEAKER_FILE,XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer_out_path, speaker_ref | |