Spaces:
Runtime error
Runtime error
| import argparse, os, re | |
| import torch | |
| import numpy as np | |
| from random import randint | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from tqdm import tqdm, trange | |
| from itertools import islice | |
| from einops import rearrange | |
| from torchvision.utils import make_grid | |
| import time | |
| from pytorch_lightning import seed_everything | |
| from torch import autocast | |
| from contextlib import contextmanager, nullcontext | |
| from einops import rearrange, repeat | |
| from ldmlib.util import instantiate_from_config | |
| from optimUtils import split_weighted_subprompts, logger | |
| from transformers import logging | |
| import pandas as pd | |
| logging.set_verbosity_error() | |
| def chunk(it, size): | |
| it = iter(it) | |
| return iter(lambda: tuple(islice(it, size)), ()) | |
| def load_model_from_config(ckpt, verbose=False): | |
| print(f"Loading model from {ckpt}") | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| if "global_step" in pl_sd: | |
| print(f"Global Step: {pl_sd['global_step']}") | |
| sd = pl_sd["state_dict"] | |
| return sd | |
| def load_img(path, h0, w0): | |
| image = Image.open(path).convert("RGB") | |
| w, h = image.size | |
| print(f"loaded input image of size ({w}, {h}) from {path}") | |
| if h0 is not None and w0 is not None: | |
| h, w = h0, w0 | |
| w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 | |
| print(f"New image size ({w}, {h})") | |
| image = image.resize((w, h), resample=Image.LANCZOS) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return 2.0 * image - 1.0 | |
| config = "optimizedSD/v1-inference.yaml" | |
| ckpt = "models/ldm/stable-diffusion-v1/model.ckpt" | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render" | |
| ) | |
| parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/img2img-samples") | |
| parser.add_argument("--init-img", type=str, nargs="?", help="path to the input image") | |
| parser.add_argument( | |
| "--skip_grid", | |
| action="store_true", | |
| help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
| ) | |
| parser.add_argument( | |
| "--skip_save", | |
| action="store_true", | |
| help="do not save individual samples. For speed measurements.", | |
| ) | |
| parser.add_argument( | |
| "--ddim_steps", | |
| type=int, | |
| default=50, | |
| help="number of ddim sampling steps", | |
| ) | |
| parser.add_argument( | |
| "--ddim_eta", | |
| type=float, | |
| default=0.0, | |
| help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
| ) | |
| parser.add_argument( | |
| "--n_iter", | |
| type=int, | |
| default=1, | |
| help="sample this often", | |
| ) | |
| parser.add_argument( | |
| "--H", | |
| type=int, | |
| default=None, | |
| help="image height, in pixel space", | |
| ) | |
| parser.add_argument( | |
| "--W", | |
| type=int, | |
| default=None, | |
| help="image width, in pixel space", | |
| ) | |
| parser.add_argument( | |
| "--strength", | |
| type=float, | |
| default=0.75, | |
| help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image", | |
| ) | |
| parser.add_argument( | |
| "--n_samples", | |
| type=int, | |
| default=5, | |
| help="how many samples to produce for each given prompt. A.k.a. batch size", | |
| ) | |
| parser.add_argument( | |
| "--n_rows", | |
| type=int, | |
| default=0, | |
| help="rows in the grid (default: n_samples)", | |
| ) | |
| parser.add_argument( | |
| "--scale", | |
| type=float, | |
| default=7.5, | |
| help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
| ) | |
| parser.add_argument( | |
| "--from-file", | |
| type=str, | |
| help="if specified, load prompts from this file", | |
| ) | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| default=None, | |
| help="the seed (for reproducible sampling)", | |
| ) | |
| parser.add_argument( | |
| "--device", | |
| type=str, | |
| default="cuda", | |
| help="CPU or GPU (cuda/cuda:0/cuda:1/...)", | |
| ) | |
| parser.add_argument( | |
| "--unet_bs", | |
| type=int, | |
| default=1, | |
| help="Slightly reduces inference time at the expense of high VRAM (value > 1 not recommended )", | |
| ) | |
| parser.add_argument( | |
| "--turbo", | |
| action="store_true", | |
| help="Reduces inference time on the expense of 1GB VRAM", | |
| ) | |
| parser.add_argument( | |
| "--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast" | |
| ) | |
| parser.add_argument( | |
| "--format", | |
| type=str, | |
| help="output image format", | |
| choices=["jpg", "png"], | |
| default="png", | |
| ) | |
| parser.add_argument( | |
| "--sampler", | |
| type=str, | |
| help="sampler", | |
| choices=["ddim"], | |
| default="ddim", | |
| ) | |
| opt = parser.parse_args() | |
| tic = time.time() | |
| os.makedirs(opt.outdir, exist_ok=True) | |
| outpath = opt.outdir | |
| grid_count = len(os.listdir(outpath)) - 1 | |
| if opt.seed == None: | |
| opt.seed = randint(0, 1000000) | |
| seed_everything(opt.seed) | |
| # Logging | |
| logger(vars(opt), log_csv = "logs/img2img_logs.csv") | |
| sd = load_model_from_config(f"{ckpt}") | |
| li, lo = [], [] | |
| for key, value in sd.items(): | |
| sp = key.split(".") | |
| if (sp[0]) == "model": | |
| if "input_blocks" in sp: | |
| li.append(key) | |
| elif "middle_block" in sp: | |
| li.append(key) | |
| elif "time_embed" in sp: | |
| li.append(key) | |
| else: | |
| lo.append(key) | |
| for key in li: | |
| sd["model1." + key[6:]] = sd.pop(key) | |
| for key in lo: | |
| sd["model2." + key[6:]] = sd.pop(key) | |
| config = OmegaConf.load(f"{config}") | |
| assert os.path.isfile(opt.init_img) | |
| init_image = load_img(opt.init_img, opt.H, opt.W).to(opt.device) | |
| model = instantiate_from_config(config.modelUNet) | |
| _, _ = model.load_state_dict(sd, strict=False) | |
| model.eval() | |
| model.cdevice = opt.device | |
| model.unet_bs = opt.unet_bs | |
| model.turbo = opt.turbo | |
| modelCS = instantiate_from_config(config.modelCondStage) | |
| _, _ = modelCS.load_state_dict(sd, strict=False) | |
| modelCS.eval() | |
| modelCS.cond_stage_model.device = opt.device | |
| modelFS = instantiate_from_config(config.modelFirstStage) | |
| _, _ = modelFS.load_state_dict(sd, strict=False) | |
| modelFS.eval() | |
| del sd | |
| if opt.device != "cpu" and opt.precision == "autocast": | |
| model.half() | |
| modelCS.half() | |
| modelFS.half() | |
| init_image = init_image.half() | |
| batch_size = opt.n_samples | |
| n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
| if not opt.from_file: | |
| assert opt.prompt is not None | |
| prompt = opt.prompt | |
| data = [batch_size * [prompt]] | |
| else: | |
| print(f"reading prompts from {opt.from_file}") | |
| with open(opt.from_file, "r") as f: | |
| data = f.read().splitlines() | |
| data = batch_size * list(data) | |
| data = list(chunk(sorted(data), batch_size)) | |
| modelFS.to(opt.device) | |
| init_image = repeat(init_image, "1 ... -> b ...", b=batch_size) | |
| init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space | |
| if opt.device != "cpu": | |
| mem = torch.cuda.memory_allocated(device=opt.device) / 1e6 | |
| modelFS.to("cpu") | |
| while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem: | |
| time.sleep(1) | |
| assert 0.0 <= opt.strength <= 1.0, "can only work with strength in [0.0, 1.0]" | |
| t_enc = int(opt.strength * opt.ddim_steps) | |
| print(f"target t_enc is {t_enc} steps") | |
| if opt.precision == "autocast" and opt.device != "cpu": | |
| precision_scope = autocast | |
| else: | |
| precision_scope = nullcontext | |
| seeds = "" | |
| with torch.no_grad(): | |
| all_samples = list() | |
| for n in trange(opt.n_iter, desc="Sampling"): | |
| for prompts in tqdm(data, desc="data"): | |
| sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompts[0])))[:150] | |
| os.makedirs(sample_path, exist_ok=True) | |
| base_count = len(os.listdir(sample_path)) | |
| with precision_scope("cuda"): | |
| modelCS.to(opt.device) | |
| uc = None | |
| if opt.scale != 1.0: | |
| uc = modelCS.get_learned_conditioning(batch_size * [""]) | |
| if isinstance(prompts, tuple): | |
| prompts = list(prompts) | |
| subprompts, weights = split_weighted_subprompts(prompts[0]) | |
| if len(subprompts) > 1: | |
| c = torch.zeros_like(uc) | |
| totalWeight = sum(weights) | |
| # normalize each "sub prompt" and add it | |
| for i in range(len(subprompts)): | |
| weight = weights[i] | |
| # if not skip_normalize: | |
| weight = weight / totalWeight | |
| c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) | |
| else: | |
| c = modelCS.get_learned_conditioning(prompts) | |
| if opt.device != "cpu": | |
| mem = torch.cuda.memory_allocated(device=opt.device) / 1e6 | |
| modelCS.to("cpu") | |
| while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem: | |
| time.sleep(1) | |
| # encode (scaled latent) | |
| z_enc = model.stochastic_encode( | |
| init_latent, | |
| torch.tensor([t_enc] * batch_size).to(opt.device), | |
| opt.seed, | |
| opt.ddim_eta, | |
| opt.ddim_steps, | |
| ) | |
| # decode it | |
| samples_ddim = model.sample( | |
| t_enc, | |
| c, | |
| z_enc, | |
| unconditional_guidance_scale=opt.scale, | |
| unconditional_conditioning=uc, | |
| sampler = opt.sampler | |
| ) | |
| modelFS.to(opt.device) | |
| print("saving images") | |
| for i in range(batch_size): | |
| x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0)) | |
| x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
| x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") | |
| Image.fromarray(x_sample.astype(np.uint8)).save( | |
| os.path.join(sample_path, "seed_" + str(opt.seed) + "_" + f"{base_count:05}.{opt.format}") | |
| ) | |
| seeds += str(opt.seed) + "," | |
| opt.seed += 1 | |
| base_count += 1 | |
| if opt.device != "cpu": | |
| mem = torch.cuda.memory_allocated(device=opt.device) / 1e6 | |
| modelFS.to("cpu") | |
| while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem: | |
| time.sleep(1) | |
| del samples_ddim | |
| print("memory_final = ", torch.cuda.memory_allocated(device=opt.device) / 1e6) | |
| toc = time.time() | |
| time_taken = (toc - tic) / 60.0 | |
| print( | |
| ( | |
| "Samples finished in {0:.2f} minutes and exported to " | |
| + sample_path | |
| + "\n Seeds used = " | |
| + seeds[:-1] | |
| ).format(time_taken) | |
| ) | |