Spaces:
Running
Running
import json | |
import os, re | |
import traceback | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image, ImageOps | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import nullcontext | |
from einops import rearrange, repeat | |
from ldmlib.util import instantiate_from_config | |
from optimizedSD.optimUtils import split_weighted_subprompts | |
from transformers import logging | |
from gfpgan import GFPGANer | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from realesrgan import RealESRGANer | |
import uuid | |
AUTH_TOKEN = os.environ.get('AUTH_TOKEN') | |
if not AUTH_TOKEN: | |
with open('/root/.huggingface/token') as f: | |
lines = f.readlines() | |
AUTH_TOKEN = lines[0] | |
logging.set_verbosity_error() | |
# consts | |
config_yaml = "optimizedSD/v1-inference.yaml" | |
filename_regex = re.compile('[^a-zA-Z0-9]') | |
# api stuff | |
from sd_internal import Request, Response, Image as ResponseImage | |
import base64 | |
from io import BytesIO | |
#from colorama import Fore | |
# local | |
stop_processing = False | |
temp_images = {} | |
ckpt_file = None | |
gfpgan_file = None | |
real_esrgan_file = None | |
model = None | |
modelCS = None | |
modelFS = None | |
model_gfpgan = None | |
model_real_esrgan = None | |
model_is_half = False | |
model_fs_is_half = False | |
device = None | |
unet_bs = 1 | |
precision = 'autocast' | |
sampler_plms = None | |
sampler_ddim = None | |
has_valid_gpu = False | |
force_full_precision = False | |
try: | |
gpu = torch.cuda.current_device() | |
gpu_name = torch.cuda.get_device_name(gpu) | |
print('GPU detected: ', gpu_name) | |
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images | |
if force_full_precision: | |
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name) | |
mem_free, mem_total = torch.cuda.mem_get_info(gpu) | |
mem_total /= float(10**9) | |
if mem_total < 3.0: | |
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion") | |
raise Exception() | |
has_valid_gpu = True | |
except: | |
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!') | |
pass | |
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast'): | |
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half | |
device = device_to_use if has_valid_gpu else 'cpu' | |
precision = precision_to_use if not force_full_precision else 'full' | |
unet_bs = unet_bs_to_use | |
unload_model() | |
if device == 'cpu': | |
precision = 'full' | |
sd = load_model_from_config(f"{ckpt_to_use}.ckpt") | |
li, lo = [], [] | |
for key, value in sd.items(): | |
sp = key.split(".") | |
if (sp[0]) == "model": | |
if "input_blocks" in sp: | |
li.append(key) | |
elif "middle_block" in sp: | |
li.append(key) | |
elif "time_embed" in sp: | |
li.append(key) | |
else: | |
lo.append(key) | |
for key in li: | |
sd["model1." + key[6:]] = sd.pop(key) | |
for key in lo: | |
sd["model2." + key[6:]] = sd.pop(key) | |
config = OmegaConf.load(f"{config_yaml}") | |
model = instantiate_from_config(config.modelUNet) | |
_, _ = model.load_state_dict(sd, strict=False) | |
model.eval() | |
model.cdevice = device | |
model.unet_bs = unet_bs | |
model.turbo = turbo | |
modelCS = instantiate_from_config(config.modelCondStage) | |
_, _ = modelCS.load_state_dict(sd, strict=False) | |
modelCS.eval() | |
modelCS.cond_stage_model.device = device | |
modelFS = instantiate_from_config(config.modelFirstStage) | |
_, _ = modelFS.load_state_dict(sd, strict=False) | |
modelFS.eval() | |
del sd | |
if device != "cpu" and precision == "autocast": | |
model.half() | |
modelCS.half() | |
modelFS.half() | |
model_is_half = True | |
model_fs_is_half = True | |
else: | |
model_is_half = False | |
model_fs_is_half = False | |
ckpt_file = ckpt_to_use | |
print('loaded ', ckpt_file, 'to', device, 'precision', precision) | |
def unload_model(): | |
global model, modelCS, modelFS | |
if model is not None: | |
del model | |
del modelCS | |
del modelFS | |
model = None | |
modelCS = None | |
modelFS = None | |
def load_model_gfpgan(gfpgan_to_use): | |
global gfpgan_file, model_gfpgan | |
if gfpgan_to_use is None: | |
return | |
gfpgan_file = gfpgan_to_use | |
model_path = gfpgan_to_use + ".pth" | |
if device == 'cpu': | |
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu')) | |
else: | |
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda')) | |
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision) | |
def load_model_real_esrgan(real_esrgan_to_use): | |
global real_esrgan_file, model_real_esrgan | |
if real_esrgan_to_use is None: | |
return | |
real_esrgan_file = real_esrgan_to_use | |
model_path = real_esrgan_to_use + ".pth" | |
RealESRGAN_models = { | |
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), | |
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) | |
} | |
model_to_use = RealESRGAN_models[real_esrgan_to_use] | |
if device == 'cpu': | |
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half | |
model_real_esrgan.device = torch.device('cpu') | |
model_real_esrgan.model.to('cpu') | |
else: | |
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half) | |
model_real_esrgan.model.name = real_esrgan_to_use | |
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision) | |
def mk_img(req: Request): | |
try: | |
yield from do_mk_img(req) | |
except Exception as e: | |
print(traceback.format_exc()) | |
gc() | |
if device != "cpu": | |
modelFS.to("cpu") | |
modelCS.to("cpu") | |
model.model1.to("cpu") | |
model.model2.to("cpu") | |
gc() | |
yield json.dumps({ | |
"status": 'failed', | |
"detail": str(e) | |
}) | |
def do_mk_img(req: Request): | |
global ckpt_file | |
global model, modelCS, modelFS, device | |
global model_gfpgan, model_real_esrgan | |
global stop_processing | |
stop_processing = False | |
res = Response() | |
res.request = req | |
res.images = [] | |
temp_images.clear() | |
# custom model support: | |
# the req.use_stable_diffusion_model needs to be a valid path | |
# to the ckpt file (without the extension). | |
needs_model_reload = False | |
ckpt_to_use = ckpt_file | |
if ckpt_to_use != req.use_stable_diffusion_model: | |
ckpt_to_use = req.use_stable_diffusion_model | |
needs_model_reload = True | |
model.turbo = req.turbo | |
if req.use_cpu: | |
if device != 'cpu': | |
device = 'cpu' | |
if model_is_half: | |
load_model_ckpt(ckpt_to_use, device) | |
needs_model_reload = False | |
load_model_gfpgan(gfpgan_file) | |
load_model_real_esrgan(real_esrgan_file) | |
else: | |
if has_valid_gpu: | |
prev_device = device | |
device = 'cuda' | |
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \ | |
(precision == 'full' and not req.use_full_precision and not force_full_precision): | |
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast')) | |
needs_model_reload = False | |
if prev_device != device: | |
load_model_gfpgan(gfpgan_file) | |
load_model_real_esrgan(real_esrgan_file) | |
if needs_model_reload: | |
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, precision) | |
if req.use_face_correction != gfpgan_file: | |
load_model_gfpgan(req.use_face_correction) | |
if req.use_upscale != real_esrgan_file: | |
load_model_real_esrgan(req.use_upscale) | |
model.cdevice = device | |
modelCS.cond_stage_model.device = device | |
opt_prompt = req.prompt | |
opt_seed = req.seed | |
opt_n_samples = req.num_outputs | |
opt_n_iter = 1 | |
opt_scale = req.guidance_scale | |
opt_C = 4 | |
opt_H = req.height | |
opt_W = req.width | |
opt_f = 8 | |
opt_ddim_steps = req.num_inference_steps | |
opt_ddim_eta = 0.0 | |
opt_strength = req.prompt_strength | |
opt_save_to_disk_path = req.save_to_disk_path | |
opt_init_img = req.init_image | |
opt_use_face_correction = req.use_face_correction | |
opt_use_upscale = req.use_upscale | |
opt_show_only_filtered = req.show_only_filtered_image | |
opt_format = req.output_format | |
opt_sampler_name = req.sampler | |
print(req.to_string(), '\n device', device) | |
print('\n\n Using precision:', precision) | |
seed_everything(opt_seed) | |
batch_size = opt_n_samples | |
prompt = opt_prompt | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
if precision == "autocast" and device != "cpu": | |
precision_scope = autocast | |
else: | |
precision_scope = nullcontext | |
mask = None | |
if req.init_image is None: | |
handler = _txt2img | |
init_latent = None | |
t_enc = None | |
else: | |
handler = _img2img | |
init_image = load_img(req.init_image, opt_W, opt_H) | |
init_image = init_image.to(device) | |
if device != "cpu" and precision == "autocast": | |
init_image = init_image.half() | |
modelFS.to(device) | |
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) | |
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space | |
if req.mask is not None: | |
mask = load_mask(req.mask, opt_W, opt_H, init_latent.shape[2], init_latent.shape[3], True).to(device) | |
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0) | |
mask = repeat(mask, '1 ... -> b ...', b=batch_size) | |
if device != "cpu" and precision == "autocast": | |
mask = mask.half() | |
move_fs_to_cpu() | |
assert 0. <= opt_strength <= 1., 'can only work with strength in [0.0, 1.0]' | |
t_enc = int(opt_strength * opt_ddim_steps) | |
print(f"target t_enc is {t_enc} steps") | |
if opt_save_to_disk_path is not None: | |
session_out_path = os.path.join(opt_save_to_disk_path, req.session_id) | |
os.makedirs(session_out_path, exist_ok=True) | |
else: | |
session_out_path = None | |
seeds = "" | |
with torch.no_grad(): | |
for n in trange(opt_n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
with precision_scope("cuda"): | |
modelCS.to(device) | |
uc = None | |
if opt_scale != 1.0: | |
uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
subprompts, weights = split_weighted_subprompts(prompts[0]) | |
if len(subprompts) > 1: | |
c = torch.zeros_like(uc) | |
totalWeight = sum(weights) | |
# normalize each "sub prompt" and add it | |
for i in range(len(subprompts)): | |
weight = weights[i] | |
# if not skip_normalize: | |
weight = weight / totalWeight | |
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) | |
else: | |
c = modelCS.get_learned_conditioning(prompts) | |
modelFS.to(device) | |
partial_x_samples = None | |
def img_callback(x_samples, i): | |
nonlocal partial_x_samples | |
partial_x_samples = x_samples | |
if req.stream_progress_updates: | |
n_steps = opt_ddim_steps if req.init_image is None else t_enc | |
progress = {"step": i, "total_steps": n_steps} | |
if req.stream_image_progress and i % 5 == 0: | |
partial_images = [] | |
for i in range(batch_size): | |
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0)) | |
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") | |
x_sample = x_sample.astype(np.uint8) | |
img = Image.fromarray(x_sample) | |
buf = BytesIO() | |
img.save(buf, format='JPEG') | |
buf.seek(0) | |
del img, x_sample, x_samples_ddim | |
# don't delete x_samples, it is used in the code that called this callback | |
temp_images[str(req.session_id) + '/' + str(i)] = buf | |
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'}) | |
progress['output'] = partial_images | |
yield json.dumps(progress) | |
if stop_processing: | |
raise UserInitiatedStop("User requested that we stop processing") | |
# run the handler | |
try: | |
if handler == _txt2img: | |
x_samples = _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, opt_sampler_name) | |
else: | |
x_samples = _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask) | |
yield from x_samples | |
x_samples = partial_x_samples | |
except UserInitiatedStop: | |
if partial_x_samples is None: | |
continue | |
x_samples = partial_x_samples | |
print("saving images") | |
for i in range(batch_size): | |
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0)) | |
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") | |
x_sample = x_sample.astype(np.uint8) | |
img = Image.fromarray(x_sample) | |
has_filters = (opt_use_face_correction is not None and opt_use_face_correction.startswith('GFPGAN')) or \ | |
(opt_use_upscale is not None and opt_use_upscale.startswith('RealESRGAN')) | |
return_orig_img = not has_filters or not opt_show_only_filtered | |
if stop_processing: | |
return_orig_img = True | |
if opt_save_to_disk_path is not None: | |
prompt_flattened = filename_regex.sub('_', prompts[0]) | |
prompt_flattened = prompt_flattened[:50] | |
img_id = str(uuid.uuid4())[-8:] | |
file_path = f"{prompt_flattened}_{img_id}" | |
img_out_path = os.path.join(session_out_path, f"{file_path}.{opt_format}") | |
meta_out_path = os.path.join(session_out_path, f"{file_path}.txt") | |
if return_orig_img: | |
save_image(img, img_out_path) | |
save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_strength, opt_use_face_correction, opt_use_upscale, opt_sampler_name, req.negative_prompt, ckpt_file) | |
if return_orig_img: | |
img_data = img_to_base64_str(img, opt_format) | |
res_image_orig = ResponseImage(data=img_data, seed=opt_seed) | |
res.images.append(res_image_orig) | |
if opt_save_to_disk_path is not None: | |
res_image_orig.path_abs = img_out_path | |
del img | |
if has_filters and not stop_processing: | |
print('Applying filters..') | |
gc() | |
filters_applied = [] | |
if opt_use_face_correction: | |
_, _, output = model_gfpgan.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) | |
x_sample = output[:,:,::-1] | |
filters_applied.append(opt_use_face_correction) | |
if opt_use_upscale: | |
output, _ = model_real_esrgan.enhance(x_sample[:,:,::-1]) | |
x_sample = output[:,:,::-1] | |
filters_applied.append(opt_use_upscale) | |
filtered_image = Image.fromarray(x_sample) | |
filtered_img_data = img_to_base64_str(filtered_image, opt_format) | |
res_image_filtered = ResponseImage(data=filtered_img_data, seed=opt_seed) | |
res.images.append(res_image_filtered) | |
filters_applied = "_".join(filters_applied) | |
if opt_save_to_disk_path is not None: | |
filtered_img_out_path = os.path.join(session_out_path, f"{file_path}_{filters_applied}.{opt_format}") | |
save_image(filtered_image, filtered_img_out_path) | |
res_image_filtered.path_abs = filtered_img_out_path | |
del filtered_image | |
seeds += str(opt_seed) + "," | |
opt_seed += 1 | |
move_fs_to_cpu() | |
gc() | |
del x_samples, x_samples_ddim, x_sample | |
print("memory_final = ", torch.cuda.memory_allocated() / 1e6) | |
print('Task completed') | |
yield json.dumps(res.json()) | |
def save_image(img, img_out_path): | |
try: | |
img.save(img_out_path) | |
except: | |
print('could not save the file', traceback.format_exc()) | |
def save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_prompt_strength, opt_correct_face, opt_upscale, sampler_name, negative_prompt, ckpt_file): | |
metadata = f"{prompts[0]}\nWidth: {opt_W}\nHeight: {opt_H}\nSeed: {opt_seed}\nSteps: {opt_ddim_steps}\nGuidance Scale: {opt_scale}\nPrompt Strength: {opt_prompt_strength}\nUse Face Correction: {opt_correct_face}\nUse Upscaling: {opt_upscale}\nSampler: {sampler_name}\nNegative Prompt: {negative_prompt}\nStable Diffusion Model: {ckpt_file + '.ckpt'}" | |
try: | |
with open(meta_out_path, 'w') as f: | |
f.write(metadata) | |
except: | |
print('could not save the file', traceback.format_exc()) | |
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name): | |
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f] | |
if device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelCS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
if sampler_name == 'ddim': | |
model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False) | |
samples_ddim = model.sample( | |
S=opt_ddim_steps, | |
conditioning=c, | |
seed=opt_seed, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt_scale, | |
unconditional_conditioning=uc, | |
eta=opt_ddim_eta, | |
x_T=start_code, | |
img_callback=img_callback, | |
mask=mask, | |
sampler = sampler_name, | |
) | |
yield from samples_ddim | |
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask): | |
# encode (scaled latent) | |
z_enc = model.stochastic_encode( | |
init_latent, | |
torch.tensor([t_enc] * batch_size).to(device), | |
opt_seed, | |
opt_ddim_eta, | |
opt_ddim_steps, | |
) | |
x_T = None if mask is None else init_latent | |
# decode it | |
samples_ddim = model.sample( | |
t_enc, | |
c, | |
z_enc, | |
unconditional_guidance_scale=opt_scale, | |
unconditional_conditioning=uc, | |
img_callback=img_callback, | |
mask=mask, | |
x_T=x_T, | |
sampler = 'ddim' | |
) | |
yield from samples_ddim | |
def move_fs_to_cpu(): | |
if device != "cpu": | |
mem = torch.cuda.memory_allocated() / 1e6 | |
modelFS.to("cpu") | |
while torch.cuda.memory_allocated() / 1e6 >= mem: | |
time.sleep(1) | |
def gc(): | |
if device == 'cpu': | |
return | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
# internal | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def load_model_from_config(ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
return sd | |
# utils | |
class UserInitiatedStop(Exception): | |
pass | |
def load_img(img_str, w0, h0): | |
image = base64_str_to_img(img_str).convert("RGB") | |
w, h = image.size | |
print(f"loaded input image of size ({w}, {h}) from base64") | |
if h0 is not None and w0 is not None: | |
h, w = h0, w0 | |
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 | |
image = image.resize((w, h), resample=Image.Resampling.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.*image - 1. | |
def load_mask(mask_str, h0, w0, newH, newW, invert=False): | |
image = base64_str_to_img(mask_str).convert("RGB") | |
w, h = image.size | |
print(f"loaded input mask of size ({w}, {h})") | |
if invert: | |
print("inverted") | |
image = ImageOps.invert(image) | |
# where_0, where_1 = np.where(image == 0), np.where(image == 255) | |
# image[where_0], image[where_1] = 255, 0 | |
if h0 is not None and w0 is not None: | |
h, w = h0, w0 | |
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 | |
print(f"New mask size ({w}, {h})") | |
image = image.resize((newW, newH), resample=Image.Resampling.LANCZOS) | |
image = np.array(image) | |
image = image.astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |
# https://stackoverflow.com/a/61114178 | |
def img_to_base64_str(img, output_format="PNG"): | |
buffered = BytesIO() | |
img.save(buffered, format=output_format) | |
buffered.seek(0) | |
img_byte = buffered.getvalue() | |
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode() | |
return img_str | |
def base64_str_to_img(img_str): | |
img_str = img_str[len("data:image/png;base64,"):] | |
data = base64.b64decode(img_str) | |
buffered = BytesIO(data) | |
img = Image.open(buffered) | |
return img | |
from fastapi import FastAPI, HTTPException | |
from fastapi.staticfiles import StaticFiles | |
from starlette.responses import FileResponse, StreamingResponse | |
from pydantic import BaseModel | |
import logging | |
from sd_internal import Request, Response | |
import json | |
import traceback | |
import sys | |
import os | |
SD_DIR = os.getcwd() | |
print('started in ', SD_DIR) | |
#SD_UI_DIR = os.getenv('SD_UI_PATH', None) | |
#sys.path.append(os.path.dirname(SD_UI_DIR)) | |
#CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, '..', 'scripts')) | |
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'models')) | |
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder | |
app = FastAPI() | |
model_loaded = False | |
model_is_loading = False | |
modifiers_cache = None | |
outpath = os.path.join(os.path.expanduser("~"), OUTPUT_DIRNAME) | |
# defaults from https://huggingface.co/blog/stable_diffusion | |
class ImageRequest(BaseModel): | |
session_id: str = "session" | |
prompt: str = "" | |
negative_prompt: str = "" | |
init_image: str = None # base64 | |
mask: str = None # base64 | |
num_outputs: int = 1 | |
num_inference_steps: int = 50 | |
guidance_scale: float = 7.5 | |
width: int = 512 | |
height: int = 512 | |
seed: int = 42 | |
prompt_strength: float = 0.8 | |
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms" | |
# allow_nsfw: bool = False | |
save_to_disk_path: str = None | |
turbo: bool = True | |
use_cpu: bool = False | |
use_full_precision: bool = False | |
use_face_correction: str = None # or "GFPGANv1.3" | |
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B" | |
use_stable_diffusion_model: str = "sd-v1-4" | |
show_only_filtered_image: bool = False | |
output_format: str = "jpeg" # or "png" | |
stream_progress_updates: bool = False | |
stream_image_progress: bool = False | |
from starlette.responses import FileResponse, StreamingResponse | |
def resolve_model_to_use(model_name): | |
if model_name in ('sd-v1-4', 'custom-model'): | |
model_path = os.path.join(MODELS_DIR, 'stable-diffusion', model_name) | |
legacy_model_path = os.path.join(SD_DIR, model_name) | |
if not os.path.exists(model_path + '.ckpt') and os.path.exists(legacy_model_path + '.ckpt'): | |
model_path = legacy_model_path | |
else: | |
model_path = os.path.join(MODELS_DIR, 'stable-diffusion', model_name) | |
return model_path | |
def image(req : ImageRequest): | |
r = Request() | |
r.session_id = req.session_id | |
r.prompt = req.prompt | |
r.negative_prompt = req.negative_prompt | |
r.init_image = req.init_image | |
r.mask = req.mask | |
r.num_outputs = req.num_outputs | |
r.num_inference_steps = req.num_inference_steps | |
r.guidance_scale = req.guidance_scale | |
r.width = req.width | |
r.height = req.height | |
r.seed = req.seed | |
r.prompt_strength = req.prompt_strength | |
r.sampler = req.sampler | |
# r.allow_nsfw = req.allow_nsfw | |
r.turbo = req.turbo | |
r.use_cpu = req.use_cpu | |
r.use_full_precision = req.use_full_precision | |
r.save_to_disk_path = req.save_to_disk_path | |
r.use_upscale: str = req.use_upscale | |
r.use_face_correction = req.use_face_correction | |
r.show_only_filtered_image = req.show_only_filtered_image | |
r.output_format = req.output_format | |
r.stream_progress_updates = True # the underlying implementation only supports streaming | |
r.stream_image_progress = req.stream_image_progress | |
r.use_stable_diffusion_model = resolve_model_to_use(req.use_stable_diffusion_model) | |
save_model_to_config(req.use_stable_diffusion_model) | |
try: | |
if not req.stream_progress_updates: | |
r.stream_image_progress = False | |
res = mk_img(r) | |
if req.stream_progress_updates: | |
return StreamingResponse(res, media_type='application/json') | |
else: # compatibility mode: buffer the streaming responses, and return the last one | |
last_result = None | |
for result in res: | |
last_result = result | |
return json.loads(last_result) | |
except Exception as e: | |
print(traceback.format_exc()) | |
return HTTPException(status_code=500, detail=str(e)) | |
def getConfig(): | |
try: | |
config_json_path = os.path.join(CONFIG_DIR, 'config.json') | |
if not os.path.exists(config_json_path): | |
return {} | |
with open(config_json_path, 'r') as f: | |
return json.load(f) | |
except Exception as e: | |
return {} | |
# needs to support the legacy installations | |
def get_initial_model_to_load(): | |
custom_weight_path = os.path.join(SD_DIR, 'custom-model.ckpt') | |
ckpt_to_use = "sd-v1-4" if not os.path.exists(custom_weight_path) else "custom-model" | |
ckpt_to_use = os.path.join(SD_DIR, ckpt_to_use) | |
config = getConfig() | |
if 'model' in config and 'stable-diffusion' in config['model']: | |
model_name = config['model']['stable-diffusion'] | |
model_path = resolve_model_to_use(model_name) | |
if os.path.exists(model_path + '.ckpt'): | |
ckpt_to_use = model_path | |
else: | |
print('Could not find the configured custom model at:', model_path + '.ckpt', '. Using the default one:', ckpt_to_use + '.ckpt') | |
return ckpt_to_use | |
#model_is_loading = True | |
#load_model_ckpt(get_initial_model_to_load(), "cuda") | |
#model_loaded = True | |
#model_is_loading = False | |
#mk_img(ImageRequest) | |