HebEMO_demo / colab_app.py
avichr's picture
Update colab_app.py
17e5d9a
raw
history blame contribute delete
No virus
1.53 kB
from HebEMO import HebEMO
from transformers import pipeline
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
from spider_plot import spider_plot
st.title("Emotion Recognition in Hebrew Texts")
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). More information can be found in our git: https://github.com/avichaychriqui/HeBERT")
st.write("Write Hebrew sentences in the text box below to analyze (each sentence in a different rew). It takes a while, be patient :). An additional demo can be found in the Colab notebook: https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff ")
@st.cache
def HebEMO_model():
return HebEMO()
HebEMO_model = HebEMO_model()
sent = st.text_area("Text", "ื”ื—ื™ื™ื ื™ืคื™ื ื•ืžืื•ืฉืจื™ื", height = 20)
# interact(HebEMO_model.hebemo, text='ื”ื—ื™ื™ื ื™ืคื™ื ื•ืžืื•ืฉืจื™', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
hebEMO_df = HebEMO_model.hebemo(sent, read_lines=True, plot=False)
hebEMO = pd.DataFrame()
for emo in hebEMO_df.columns[1::2]:
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
st.write (hebEMO)