avciTheProgrammer commited on
Commit
448880c
·
verified ·
1 Parent(s): b84127d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -13
app.py CHANGED
@@ -2,27 +2,41 @@ import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
 
5
- # Load model and tokenizer from Hugging Face Hub
6
  model_id = "deepseek-ai/deepseek-coder-1.3b-base"
7
- # model_id = "gpt2"
 
 
8
  tokenizer = AutoTokenizer.from_pretrained(model_id)
9
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
 
 
 
 
 
 
 
10
 
11
  def generate_code(prompt):
12
  if not prompt.strip():
13
  return "⚠ Please enter a valid prompt."
14
-
15
- inputs = tokenizer(prompt, return_tensors="pt")
16
- inputs = {k: v.to(model.device) for k, v in inputs.items()}
17
-
18
  with torch.no_grad():
19
- outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7)
20
-
 
 
 
 
21
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
22
 
23
- demo = gr.Interface(fn=generate_code,
24
- inputs=gr.Textbox(lines=5, label="Enter Prompt"),
25
- outputs="text",
26
- title="Code Generator using DeepSeek")
 
 
27
 
28
  demo.launch()
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
 
5
+ # Set model ID
6
  model_id = "deepseek-ai/deepseek-coder-1.3b-base"
7
+ # For smaller testing you can use: model_id = "gpt2"
8
+
9
+ # Load tokenizer and model
10
  tokenizer = AutoTokenizer.from_pretrained(model_id)
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ model_id,
13
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
14
+ )
15
+
16
+ # Move model to GPU if available
17
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
+ model.to(device)
19
 
20
  def generate_code(prompt):
21
  if not prompt.strip():
22
  return "⚠ Please enter a valid prompt."
23
+
24
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
25
+
 
26
  with torch.no_grad():
27
+ outputs = model.generate(
28
+ **inputs,
29
+ max_new_tokens=200,
30
+ temperature=0.7
31
+ )
32
+
33
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
34
 
35
+ demo = gr.Interface(
36
+ fn=generate_code,
37
+ inputs=gr.Textbox(lines=5, label="Enter Prompt"),
38
+ outputs=gr.Textbox(label="Generated Output"),
39
+ title="Code Generator using DeepSeek"
40
+ )
41
 
42
  demo.launch()