|
from datetime import datetime |
|
import json |
|
import math |
|
from typing import Iterator, Union |
|
import argparse |
|
|
|
from io import StringIO |
|
import time |
|
import os |
|
import tempfile |
|
import zipfile |
|
import numpy as np |
|
|
|
import torch |
|
|
|
from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode |
|
from src.hooks.progressListener import ProgressListener |
|
from src.hooks.subTaskProgressListener import SubTaskProgressListener |
|
from src.hooks.whisperProgressHook import create_progress_listener_handle |
|
from src.languages import _TO_LANGUAGE_CODE |
|
from src.languages import get_language_names |
|
from src.languages import get_language_from_name |
|
from src.modelCache import ModelCache |
|
from src.prompts.jsonPromptStrategy import JsonPromptStrategy |
|
from src.prompts.prependPromptStrategy import PrependPromptStrategy |
|
from src.source import get_audio_source_collection |
|
from src.vadParallel import ParallelContext, ParallelTranscription |
|
|
|
|
|
import ffmpeg |
|
|
|
|
|
import gradio as gr |
|
|
|
from src.download import ExceededMaximumDuration, download_url |
|
from src.utils import optional_int, slugify, write_srt, write_vtt |
|
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription |
|
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer |
|
from src.whisper.whisperFactory import create_whisper_container |
|
from src.nllb.nllbModel import NllbModel |
|
from src.nllb.nllbLangs import _TO_NLLB_LANG_CODE |
|
from src.nllb.nllbLangs import get_nllb_lang_names |
|
from src.nllb.nllbLangs import get_nllb_lang_from_name |
|
|
|
import shutil |
|
import zhconv |
|
import tqdm |
|
|
|
|
|
|
|
|
|
MAX_FILE_PREFIX_LENGTH = 17 |
|
|
|
|
|
MAX_AUTO_CPU_CORES = 8 |
|
|
|
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2"] |
|
|
|
class VadOptions: |
|
def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, |
|
vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT): |
|
self.vad = vad |
|
self.vadMergeWindow = vadMergeWindow |
|
self.vadMaxMergeSize = vadMaxMergeSize |
|
self.vadPadding = vadPadding |
|
self.vadPromptWindow = vadPromptWindow |
|
self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \ |
|
else VadInitialPromptMode.from_string(vadInitialPromptMode) |
|
|
|
class WhisperTranscriber: |
|
def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None, |
|
vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None, |
|
app_config: ApplicationConfig = None): |
|
self.model_cache = ModelCache() |
|
self.parallel_device_list = None |
|
self.gpu_parallel_context = None |
|
self.cpu_parallel_context = None |
|
self.vad_process_timeout = vad_process_timeout |
|
self.vad_cpu_cores = vad_cpu_cores |
|
|
|
self.vad_model = None |
|
self.inputAudioMaxDuration = input_audio_max_duration |
|
self.deleteUploadedFiles = delete_uploaded_files |
|
self.output_dir = output_dir |
|
|
|
self.app_config = app_config |
|
|
|
def set_parallel_devices(self, vad_parallel_devices: str): |
|
self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None |
|
|
|
def set_auto_parallel(self, auto_parallel: bool): |
|
if auto_parallel: |
|
if torch.cuda.is_available(): |
|
self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())] |
|
|
|
self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES) |
|
print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.") |
|
|
|
|
|
def transcribe_webui_simple(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, |
|
vad, vadMergeWindow, vadMaxMergeSize, |
|
word_timestamps: bool = False, highlight_words: bool = False): |
|
return self.transcribe_webui_simple_progress(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, |
|
vad, vadMergeWindow, vadMaxMergeSize, |
|
word_timestamps, highlight_words) |
|
|
|
|
|
def transcribe_webui_simple_progress(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, |
|
vad, vadMergeWindow, vadMaxMergeSize, |
|
word_timestamps: bool = False, highlight_words: bool = False, |
|
progress=gr.Progress()): |
|
|
|
vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, self.app_config.vad_padding, self.app_config.vad_prompt_window, self.app_config.vad_initial_prompt_mode) |
|
|
|
return self.transcribe_webui(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vadOptions, |
|
word_timestamps=word_timestamps, highlight_words=highlight_words, progress=progress) |
|
|
|
|
|
def transcribe_webui_full(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, |
|
vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, |
|
|
|
word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str, |
|
initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, |
|
condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, |
|
compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float): |
|
|
|
return self.transcribe_webui_full_progress(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, |
|
vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, |
|
word_timestamps, highlight_words, prepend_punctuations, append_punctuations, |
|
initial_prompt, temperature, best_of, beam_size, patience, length_penalty, suppress_tokens, |
|
condition_on_previous_text, fp16, temperature_increment_on_fallback, |
|
compression_ratio_threshold, logprob_threshold, no_speech_threshold) |
|
|
|
|
|
def transcribe_webui_full_progress(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, |
|
vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, |
|
|
|
word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str, |
|
initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, |
|
condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, |
|
compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float, |
|
progress=gr.Progress()): |
|
|
|
|
|
if temperature_increment_on_fallback is not None: |
|
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)) |
|
else: |
|
temperature = [temperature] |
|
|
|
vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode) |
|
|
|
return self.transcribe_webui(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vadOptions, |
|
initial_prompt=initial_prompt, temperature=temperature, best_of=best_of, beam_size=beam_size, patience=patience, length_penalty=length_penalty, suppress_tokens=suppress_tokens, |
|
condition_on_previous_text=condition_on_previous_text, fp16=fp16, |
|
compression_ratio_threshold=compression_ratio_threshold, logprob_threshold=logprob_threshold, no_speech_threshold=no_speech_threshold, |
|
word_timestamps=word_timestamps, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, highlight_words=highlight_words, |
|
progress=progress) |
|
|
|
def transcribe_webui(self, modelName: str, languageName: str, nllbModelName: str, nllbLangName: str, urlData: str, multipleFiles, microphoneData: str, task: str, |
|
vadOptions: VadOptions, progress: gr.Progress = None, highlight_words: bool = False, |
|
**decodeOptions: dict): |
|
try: |
|
progress(0, desc="init audio sources") |
|
sources = self.__get_source(urlData, multipleFiles, microphoneData) |
|
|
|
try: |
|
progress(0, desc="init whisper model") |
|
whisper_lang = get_language_from_name(languageName) |
|
selectedLanguage = languageName.lower() if languageName is not None and len(languageName) > 0 else None |
|
selectedModel = modelName if modelName is not None else "base" |
|
|
|
model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation, |
|
model_name=selectedModel, compute_type=self.app_config.compute_type, |
|
cache=self.model_cache, models=self.app_config.models) |
|
|
|
progress(0, desc="init translate model") |
|
nllb_lang = get_nllb_lang_from_name(nllbLangName) |
|
selectedNllbModelName = nllbModelName if nllbModelName is not None and len(nllbModelName) > 0 else "nllb-200-distilled-600M/facebook" |
|
selectedNllbModel = next((modelConfig for modelConfig in self.app_config.nllb_models if modelConfig.name == selectedNllbModelName), None) |
|
|
|
nllb_model = NllbModel(model_config=selectedNllbModel, whisper_lang=whisper_lang, nllb_lang=nllb_lang) |
|
|
|
progress(0, desc="init transcribe") |
|
|
|
download = [] |
|
zip_file_lookup = {} |
|
text = "" |
|
vtt = "" |
|
|
|
|
|
downloadDirectory = tempfile.mkdtemp() |
|
source_index = 0 |
|
extra_tasks_count = 1 if nllb_lang is not None else 0 |
|
|
|
outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory |
|
|
|
|
|
total_duration = sum([source.get_audio_duration() for source in sources]) |
|
current_progress = 0 |
|
|
|
|
|
root_progress_listener = self._create_progress_listener(progress) |
|
sub_task_total = 1/(len(sources)+extra_tasks_count*len(sources)) |
|
|
|
|
|
for idx, source in enumerate(sources): |
|
source_prefix = "" |
|
source_audio_duration = source.get_audio_duration() |
|
|
|
if (len(sources) > 1): |
|
|
|
source_index += 1 |
|
source_prefix = str(source_index).zfill(2) + "_" |
|
print("Transcribing ", source.source_path) |
|
|
|
scaled_progress_listener = SubTaskProgressListener(root_progress_listener, |
|
base_task_total=1, |
|
sub_task_start=idx*1/len(sources), |
|
sub_task_total=sub_task_total) |
|
|
|
|
|
result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vadOptions, scaled_progress_listener, **decodeOptions) |
|
filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True) |
|
|
|
|
|
current_progress += source_audio_duration |
|
|
|
source_download, source_text, source_vtt = self.write_result(result, nllb_model, filePrefix, outputDirectory, highlight_words, scaled_progress_listener) |
|
|
|
if len(sources) > 1: |
|
|
|
if (len(source_text) > 0): |
|
source_text += os.linesep + os.linesep |
|
if (len(source_vtt) > 0): |
|
source_vtt += os.linesep + os.linesep |
|
|
|
|
|
source_text = source.get_full_name() + ":" + os.linesep + source_text |
|
source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt |
|
|
|
|
|
download.extend(source_download) |
|
text += source_text |
|
vtt += source_vtt |
|
|
|
if (len(sources) > 1): |
|
|
|
zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True) |
|
|
|
|
|
for source_download_file in source_download: |
|
|
|
filePostfix = os.path.basename(source_download_file).split("-")[-1] |
|
zip_file_name = zipFilePrefix + "-" + filePostfix |
|
zip_file_lookup[source_download_file] = zip_file_name |
|
|
|
|
|
if len(sources) > 1: |
|
downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip") |
|
|
|
with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip: |
|
for download_file in download: |
|
|
|
zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file)) |
|
zip.write(download_file, arcname=zip_file_name) |
|
|
|
download.insert(0, downloadAllPath) |
|
|
|
return download, text, vtt |
|
|
|
finally: |
|
|
|
if self.deleteUploadedFiles: |
|
for source in sources: |
|
if self.app_config.merge_subtitle_with_sources and self.app_config.output_dir is not None and len(source_download) > 0: |
|
print("\nmerge subtitle(srt) with source file [" + source.source_name + "]\n") |
|
outRsult = "" |
|
try: |
|
srt_path = source_download[0] |
|
save_path = os.path.join(self.app_config.output_dir, source.source_name) |
|
save_without_ext, ext = os.path.splitext(save_path) |
|
source_lang = "." + whisper_lang.code if whisper_lang is not None else "" |
|
translate_lang = "." + nllb_lang.code if nllb_lang is not None else "" |
|
output_with_srt = save_without_ext + source_lang + translate_lang + ext |
|
|
|
|
|
input_file = ffmpeg.input(source.source_path) |
|
input_srt = ffmpeg.input(srt_path) |
|
out = ffmpeg.output(input_file, input_srt, output_with_srt, vcodec='copy', acodec='copy', scodec='mov_text') |
|
outRsult = out.run(overwrite_output=True) |
|
except Exception as e: |
|
|
|
print("Error merge subtitle with source file: \n" + source.source_path + ", \n" + str(e), outRsult) |
|
elif self.app_config.save_downloaded_files and self.app_config.output_dir is not None and urlData: |
|
print("Saving downloaded file [" + source.source_name + "]") |
|
try: |
|
shutil.copy(source.source_path, self.app_config.output_dir) |
|
except Exception as e: |
|
|
|
print("Error saving downloaded file: \n" + source.source_path + ", \n" + str(e)) |
|
|
|
print("Deleting temporary source file: " + source.source_path) |
|
try: |
|
os.remove(source.source_path) |
|
except Exception as e: |
|
|
|
print("Error deleting temporary source file: \n" + source.source_path + ", \n" + str(e)) |
|
|
|
except ExceededMaximumDuration as e: |
|
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]" |
|
|
|
def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, language: str, task: str = None, |
|
vadOptions: VadOptions = VadOptions(), |
|
progressListener: ProgressListener = None, **decodeOptions: dict): |
|
|
|
initial_prompt = decodeOptions.pop('initial_prompt', None) |
|
|
|
if progressListener is None: |
|
|
|
progressListener = ProgressListener() |
|
|
|
if ('task' in decodeOptions): |
|
task = decodeOptions.pop('task') |
|
|
|
initial_prompt_mode = vadOptions.vadInitialPromptMode |
|
|
|
|
|
if (initial_prompt_mode is None): |
|
initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT |
|
|
|
if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or |
|
initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT): |
|
|
|
prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode) |
|
elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE): |
|
|
|
prompt_strategy = JsonPromptStrategy(initial_prompt) |
|
else: |
|
raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode) |
|
|
|
|
|
whisperCallable = model.create_callback(language, task, prompt_strategy=prompt_strategy, **decodeOptions) |
|
|
|
|
|
if (vadOptions.vad == 'silero-vad'): |
|
|
|
process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions) |
|
result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener) |
|
elif (vadOptions.vad == 'silero-vad-skip-gaps'): |
|
|
|
skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions) |
|
result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener) |
|
elif (vadOptions.vad == 'silero-vad-expand-into-gaps'): |
|
|
|
expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions) |
|
result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener) |
|
elif (vadOptions.vad == 'periodic-vad'): |
|
|
|
|
|
periodic_vad = VadPeriodicTranscription() |
|
period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow) |
|
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) |
|
|
|
else: |
|
if (self._has_parallel_devices()): |
|
|
|
periodic_vad = VadPeriodicTranscription() |
|
period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1) |
|
|
|
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) |
|
else: |
|
|
|
result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener) |
|
|
|
return result |
|
|
|
def _create_progress_listener(self, progress: gr.Progress): |
|
if (progress is None): |
|
|
|
return ProgressListener() |
|
|
|
class ForwardingProgressListener(ProgressListener): |
|
def __init__(self, progress: gr.Progress): |
|
self.progress = progress |
|
|
|
def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None): |
|
|
|
self.progress(current / total, desc=desc) |
|
|
|
def on_finished(self, desc: str = None): |
|
self.progress(1, desc=desc) |
|
|
|
return ForwardingProgressListener(progress) |
|
|
|
def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig, |
|
progressListener: ProgressListener = None): |
|
if (not self._has_parallel_devices()): |
|
|
|
return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener) |
|
|
|
gpu_devices = self.parallel_device_list |
|
|
|
if (gpu_devices is None or len(gpu_devices) == 0): |
|
|
|
gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)] |
|
|
|
|
|
if (self.gpu_parallel_context is None): |
|
|
|
self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout) |
|
|
|
if (self.cpu_parallel_context is None): |
|
self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout) |
|
|
|
parallel_vad = ParallelTranscription() |
|
return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable, |
|
config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, |
|
cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context, |
|
progress_listener=progressListener) |
|
|
|
def _has_parallel_devices(self): |
|
return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1 |
|
|
|
def _concat_prompt(self, prompt1, prompt2): |
|
if (prompt1 is None): |
|
return prompt2 |
|
elif (prompt2 is None): |
|
return prompt1 |
|
else: |
|
return prompt1 + " " + prompt2 |
|
|
|
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions): |
|
|
|
if (self.vad_model is None): |
|
self.vad_model = VadSileroTranscription() |
|
|
|
config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, |
|
max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize, |
|
segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding, |
|
max_prompt_window=vadOptions.vadPromptWindow) |
|
|
|
return config |
|
|
|
def write_result(self, result: dict, nllb_model: NllbModel, source_name: str, output_dir: str, highlight_words: bool = False, progressListener: ProgressListener = None): |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
text = result["text"] |
|
segments = result["segments"] |
|
language = result["language"] |
|
languageMaxLineWidth = self.__get_max_line_width(language) |
|
|
|
if nllb_model.nllb_lang is not None: |
|
try: |
|
segments_progress_listener = SubTaskProgressListener(progressListener, |
|
base_task_total=progressListener.sub_task_total, |
|
sub_task_start=1, |
|
sub_task_total=1) |
|
pbar = tqdm.tqdm(total=len(segments)) |
|
perf_start_time = time.perf_counter() |
|
nllb_model.load_model() |
|
for idx, segment in enumerate(segments): |
|
seg_text = segment["text"] |
|
if language == "zh": |
|
segment["text"] = zhconv.convert(seg_text, "zh-tw") |
|
if nllb_model.nllb_lang is not None: |
|
segment["text"] = nllb_model.translation(seg_text) |
|
pbar.update(1) |
|
segments_progress_listener.on_progress(idx+1, len(segments), desc=f"Process segments: {idx}/{len(segments)}") |
|
|
|
nllb_model.release_vram() |
|
perf_end_time = time.perf_counter() |
|
|
|
if segments_progress_listener is not None: |
|
segments_progress_listener.on_finished(desc=f"Process segments: {idx}/{len(segments)}") |
|
|
|
print("\n\nprocess segments took {} seconds.\n\n".format(perf_end_time - perf_start_time)) |
|
except Exception as e: |
|
|
|
print("Error process segments: " + str(e)) |
|
|
|
print("Max line width " + str(languageMaxLineWidth) + " for language:" + language) |
|
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words) |
|
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words) |
|
json_result = json.dumps(result, indent=4, ensure_ascii=False) |
|
|
|
if language == "zh" or (nllb_model.nllb_lang is not None and nllb_model.nllb_lang.code == "zho_Hant"): |
|
vtt = zhconv.convert(vtt, "zh-tw") |
|
srt = zhconv.convert(srt, "zh-tw") |
|
text = zhconv.convert(text, "zh-tw") |
|
json_result = zhconv.convert(json_result, "zh-tw") |
|
|
|
output_files = [] |
|
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt")); |
|
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt")); |
|
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt")); |
|
output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json")); |
|
|
|
return output_files, text, vtt |
|
|
|
def clear_cache(self): |
|
self.model_cache.clear() |
|
self.vad_model = None |
|
|
|
def __get_source(self, urlData, multipleFiles, microphoneData): |
|
return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration) |
|
|
|
def __get_max_line_width(self, language: str) -> int: |
|
if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]): |
|
|
|
return 40 |
|
else: |
|
|
|
|
|
return 80 |
|
|
|
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str: |
|
segmentStream = StringIO() |
|
|
|
if format == 'vtt': |
|
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) |
|
elif format == 'srt': |
|
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) |
|
else: |
|
raise Exception("Unknown format " + format) |
|
|
|
segmentStream.seek(0) |
|
return segmentStream.read() |
|
|
|
def __create_file(self, text: str, directory: str, fileName: str) -> str: |
|
|
|
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: |
|
file.write(text) |
|
|
|
return file.name |
|
|
|
def close(self): |
|
print("Closing parallel contexts") |
|
self.clear_cache() |
|
|
|
if (self.gpu_parallel_context is not None): |
|
self.gpu_parallel_context.close() |
|
if (self.cpu_parallel_context is not None): |
|
self.cpu_parallel_context.close() |
|
|
|
|
|
def create_ui(app_config: ApplicationConfig): |
|
ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores, |
|
app_config.delete_uploaded_files, app_config.output_dir, app_config) |
|
|
|
|
|
ui.set_parallel_devices(app_config.vad_parallel_devices) |
|
ui.set_auto_parallel(app_config.auto_parallel) |
|
|
|
is_whisper = False |
|
|
|
if app_config.whisper_implementation == "whisper": |
|
implementation_name = "Whisper" |
|
is_whisper = True |
|
elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]: |
|
implementation_name = "Faster Whisper" |
|
else: |
|
|
|
implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ") |
|
|
|
ui_description = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse " |
|
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition " |
|
ui_description += " as well as speech translation and language identification. " |
|
|
|
ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option." |
|
|
|
|
|
if is_whisper: |
|
ui_description += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)." |
|
|
|
if app_config.input_audio_max_duration > 0: |
|
ui_description += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s" |
|
|
|
ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)." |
|
ui_article += "\n\nWhisper's Task 'translate' only implements the functionality of translating other languages into English. " |
|
ui_article += "OpenAI does not guarantee translations between arbitrary languages. In such cases, you can choose to use the NLLB Model to implement the translation task. " |
|
ui_article += "However, it's important to note that the NLLB Model runs slowly, and the completion time may be twice as long as usual. " |
|
ui_article += "\n\nThe larger the parameters of the NLLB model, the better its performance is expected to be. " |
|
ui_article += "However, it also requires higher computational resources, making it slower to operate. " |
|
ui_article += "On the other hand, the version converted from ct2 (CTranslate2) requires lower resources and operates at a faster speed." |
|
ui_article += "\n\nCurrently, enabling word-level timestamps cannot be used in conjunction with NLLB Model translation " |
|
ui_article += "because Word Timestamps will split the source text, and after translation, it becomes a non-word-level string. " |
|
ui_article += "\n\nThe 'mt5-zh-ja-en-trimmed' model is finetuned from Google's 'mt5-base' model. " |
|
ui_article += "This model has a relatively good translation speed, but it only supports three languages: Chinese, Japanese, and English. " |
|
|
|
whisper_models = app_config.get_model_names() |
|
nllb_models = app_config.get_nllb_model_names() |
|
|
|
common_whisper_inputs = lambda : [ |
|
gr.Dropdown(label="Whisper Model (for audio)", choices=whisper_models, value=app_config.default_model_name), |
|
gr.Dropdown(label="Whisper Language", choices=sorted(get_language_names()), value=app_config.language), |
|
] |
|
common_nllb_inputs = lambda : [ |
|
gr.Dropdown(label="NLLB Model (for translate)", choices=nllb_models), |
|
gr.Dropdown(label="NLLB Language", choices=sorted(get_nllb_lang_names())), |
|
] |
|
common_audio_inputs = lambda : [ |
|
gr.Text(label="URL (YouTube, etc.)"), |
|
gr.File(label="Upload Files", file_count="multiple"), |
|
gr.Audio(source="microphone", type="filepath", label="Microphone Input"), |
|
gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task), |
|
] |
|
|
|
common_vad_inputs = lambda : [ |
|
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD"), |
|
gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window), |
|
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size), |
|
] |
|
|
|
common_word_timestamps_inputs = lambda : [ |
|
gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps), |
|
gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words), |
|
] |
|
|
|
common_output = lambda : [ |
|
gr.File(label="Download"), |
|
gr.Text(label="Transcription"), |
|
gr.Text(label="Segments"), |
|
] |
|
|
|
is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0 |
|
|
|
simple_callback = gr.CSVLogger() |
|
|
|
with gr.Blocks() as simple_transcribe: |
|
gr.Markdown(ui_description) |
|
with gr.Row(): |
|
with gr.Column(): |
|
simple_submit = gr.Button("Submit", variant="primary") |
|
with gr.Column(): |
|
with gr.Row(): |
|
simple_input = common_whisper_inputs() |
|
with gr.Row(): |
|
simple_input += common_nllb_inputs() |
|
with gr.Column(): |
|
simple_input += common_audio_inputs() + common_vad_inputs() + common_word_timestamps_inputs() |
|
with gr.Column(): |
|
simple_output = common_output() |
|
simple_flag = gr.Button("Flag") |
|
gr.Markdown(ui_article) |
|
|
|
|
|
simple_callback.setup(simple_input + simple_output, "flagged") |
|
|
|
simple_submit.click(fn=ui.transcribe_webui_simple_progress if is_queue_mode else ui.transcribe_webui_simple, |
|
inputs=simple_input, outputs=simple_output) |
|
|
|
simple_flag.click(lambda *args: print("simple_callback.flag...") or simple_callback.flag(args), simple_input + simple_output, None, preprocess=False) |
|
|
|
full_description = ui_description + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash." |
|
|
|
full_callback = gr.CSVLogger() |
|
|
|
with gr.Blocks() as full_transcribe: |
|
gr.Markdown(full_description) |
|
with gr.Row(): |
|
with gr.Column(): |
|
full_submit = gr.Button("Submit", variant="primary") |
|
with gr.Column(): |
|
with gr.Row(): |
|
full_input1 = common_whisper_inputs() |
|
with gr.Row(): |
|
full_input1 += common_nllb_inputs() |
|
with gr.Column(): |
|
full_input1 += common_audio_inputs() + common_vad_inputs() + [ |
|
gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding), |
|
gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window), |
|
gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode")] |
|
|
|
full_input2 = common_word_timestamps_inputs() + [ |
|
gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations), |
|
gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations), |
|
gr.TextArea(label="Initial Prompt"), |
|
gr.Number(label="Temperature", value=app_config.temperature), |
|
gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0), |
|
gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0), |
|
gr.Number(label="Patience - Zero temperature", value=app_config.patience), |
|
gr.Number(label="Length Penalty - Any temperature", value=app_config.length_penalty), |
|
gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens), |
|
gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text), |
|
gr.Checkbox(label="FP16", value=app_config.fp16), |
|
gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback), |
|
gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold), |
|
gr.Number(label="Logprob threshold", value=app_config.logprob_threshold), |
|
gr.Number(label="No speech threshold", value=app_config.no_speech_threshold)] |
|
|
|
with gr.Column(): |
|
full_output = common_output() |
|
full_flag = gr.Button("Flag") |
|
gr.Markdown(ui_article) |
|
|
|
|
|
full_callback.setup(full_input1 + full_input2 + full_output, "flagged") |
|
|
|
full_submit.click(fn=ui.transcribe_webui_full_progress if is_queue_mode else ui.transcribe_webui_full, |
|
inputs=full_input1+full_input2, outputs=full_output) |
|
|
|
full_flag.click(lambda *args: print("full_callback.flag...") or full_callback.flag(args), full_input1 + full_input2 + full_output, None, preprocess=False) |
|
|
|
demo = gr.TabbedInterface([simple_transcribe, full_transcribe], tab_names=["Simple", "Full"]) |
|
|
|
|
|
if is_queue_mode: |
|
demo.queue(concurrency_count=app_config.queue_concurrency_count) |
|
print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")") |
|
else: |
|
print("Queue mode disabled - progress bars will not be shown.") |
|
|
|
demo.launch(inbrowser=app_config.autolaunch, share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port) |
|
|
|
|
|
ui.close() |
|
|
|
if __name__ == '__main__': |
|
default_app_config = ApplicationConfig.create_default() |
|
whisper_models = default_app_config.get_model_names() |
|
nllb_models = default_app_config.get_nllb_model_names() |
|
|
|
|
|
default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation) |
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \ |
|
help="Maximum audio file length in seconds, or -1 for no limit.") |
|
parser.add_argument("--share", type=bool, default=default_app_config.share, \ |
|
help="True to share the app on HuggingFace.") |
|
parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \ |
|
help="The host or IP to bind to. If None, bind to localhost.") |
|
parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \ |
|
help="The port to bind to.") |
|
parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \ |
|
help="The number of concurrent requests to process.") |
|
parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \ |
|
help="The default model name.") |
|
parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \ |
|
help="The default VAD.") |
|
parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \ |
|
help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") |
|
parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \ |
|
help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") |
|
parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \ |
|
help="The number of CPU cores to use for VAD pre-processing.") |
|
parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \ |
|
help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") |
|
parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \ |
|
help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") |
|
parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \ |
|
help="directory to save the outputs") |
|
parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\ |
|
help="the Whisper implementation to use") |
|
parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \ |
|
help="the compute type to use for inference") |
|
parser.add_argument("--threads", type=optional_int, default=0, |
|
help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS") |
|
parser.add_argument("--vad_max_merge_size", type=int, default=default_app_config.vad_max_merge_size, \ |
|
help="The number of VAD - Max Merge Size (s).") |
|
parser.add_argument("--language", type=str, default=None, choices=sorted(get_language_names()) + sorted([k.title() for k in _TO_LANGUAGE_CODE.keys()]), |
|
help="language spoken in the audio, specify None to perform language detection") |
|
parser.add_argument("--save_downloaded_files", action='store_true', \ |
|
help="True to move downloaded files to outputs directory. This argument will take effect only after output_dir is set.") |
|
parser.add_argument("--merge_subtitle_with_sources", action='store_true', \ |
|
help="True to merge subtitle(srt) with sources and move the sources files to the outputs directory. This argument will take effect only after output_dir is set.") |
|
parser.add_argument("--autolaunch", action='store_true', \ |
|
help="open the webui URL in the system's default browser upon launch") |
|
|
|
|
|
args = parser.parse_args().__dict__ |
|
|
|
updated_config = default_app_config.update(**args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (threads := args.pop("threads")) > 0: |
|
torch.set_num_threads(threads) |
|
|
|
create_ui(app_config=updated_config) |