Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
def merge(base_model, trained_adapter, token): | |
base = AutoModelForCausalLM.from_pretrained( | |
base_model, torch_dtype=torch.float16, low_cpu_mem_usage=True, token=token | |
) | |
model = PeftModel.from_pretrained(base, trained_adapter, token=token) | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(base_model, token=token) | |
except RecursionError: | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model, unk_token="<unk>", token=token | |
) | |
model = model.merge_and_unload() | |
print("Saving target model") | |
model.push_to_hub(trained_adapter, token=token) | |
tokenizer.push_to_hub(trained_adapter, token=token) | |
return gr.Markdown.update( | |
value="Model successfully merged and pushed! Please shutdown/pause this space" | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("## AutoTrain Merge Adapter") | |
gr.Markdown("Please duplicate this space and attach a GPU in order to use it.") | |
token = gr.Textbox( | |
label="Hugging Face Write Token", | |
value="", | |
lines=1, | |
max_lines=1, | |
interactive=True, | |
type="password", | |
) | |
base_model = gr.Textbox( | |
label="Base Model (e.g. meta-llama/Llama-2-7b-chat-hf)", | |
value="", | |
lines=1, | |
max_lines=1, | |
interactive=True, | |
) | |
trained_adapter = gr.Textbox( | |
label="Trained Adapter Model (e.g. username/autotrain-my-llama)", | |
value="", | |
lines=1, | |
max_lines=1, | |
interactive=True, | |
) | |
submit = gr.Button(value="Merge & Push") | |
op = gr.Markdown(interactive=False) | |
submit.click(merge, inputs=[base_model, trained_adapter, token], outputs=[op]) | |
if __name__ == "__main__": | |
demo.launch() | |