Spaces:
Sleeping
Sleeping
import spaces | |
import logging | |
from datetime import datetime | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import torchaudio | |
import os | |
try: | |
import mmaudio | |
except ImportError: | |
os.system("pip install -e .") | |
import mmaudio | |
from mmaudio.eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image, | |
load_video, make_video, setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.sequence_config import SequenceConfig | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
log = logging.getLogger() | |
device = 'cuda' | |
dtype = torch.bfloat16 | |
model: ModelConfig = all_model_cfg['large_44k_v2'] | |
model.download_if_needed() | |
output_dir = Path('./output/gradio') | |
setup_eval_logging() | |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: | |
seq_cfg = model.seq_cfg | |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded weights from {model.model_path}') | |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, | |
synchformer_ckpt=model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model.mode, | |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
return net, feature_utils, seq_cfg | |
net, feature_utils, seq_cfg = get_model() | |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int, | |
cfg_strength: float, duration: float): | |
rng = torch.Generator(device=device) | |
if seed >= 0: | |
rng.manual_seed(seed) | |
else: | |
rng.seed() | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
video_info = load_video(video, duration) | |
clip_frames = video_info.clip_frames | |
sync_frames = video_info.sync_frames | |
duration = video_info.duration_sec | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') | |
# output_dir.mkdir(exist_ok=True, parents=True) | |
# video_save_path = output_dir / f'{current_time_string}.mp4' | |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
log.info(f'Saved video to {video_save_path}') | |
return video_save_path | |
def image_to_audio(image: gr.Image, prompt: str, negative_prompt: str, seed: int, num_steps: int, | |
cfg_strength: float, duration: float): | |
rng = torch.Generator(device=device) | |
if seed >= 0: | |
rng.manual_seed(seed) | |
else: | |
rng.seed() | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
image_info = load_image(image) | |
clip_frames = image_info.clip_frames | |
sync_frames = image_info.sync_frames | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength, | |
image_input=True) | |
audio = audios.float().cpu()[0] | |
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') | |
# output_dir.mkdir(exist_ok=True, parents=True) | |
# video_save_path = output_dir / f'{current_time_string}.mp4' | |
video_info = VideoInfo.from_image_info(image_info, duration, fps=Fraction(1)) | |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
log.info(f'Saved video to {video_save_path}') | |
return video_save_path | |
# @spaces.GPU(duration=120) | |
# @torch.inference_mode() | |
# def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float, | |
# duration: float): | |
# rng = torch.Generator(device=device) | |
# if seed >= 0: | |
# rng.manual_seed(seed) | |
# else: | |
# rng.seed() | |
# fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
# clip_frames = sync_frames = None | |
# seq_cfg.duration = duration | |
# net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
# audios = generate(clip_frames, | |
# sync_frames, [prompt], | |
# negative_text=[negative_prompt], | |
# feature_utils=feature_utils, | |
# net=net, | |
# fm=fm, | |
# rng=rng, | |
# cfg_strength=cfg_strength) | |
# audio = audios.float().cpu()[0] | |
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') | |
# output_dir.mkdir(exist_ok=True, parents=True) | |
# audio_save_path = output_dir / f'{current_time_string}.flac' | |
# torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate) | |
# gc.collect() | |
# return audio_save_path | |
video_to_audio_tab = gr.Interface( | |
fn=video_to_audio, | |
description=""" Video-to-Audio | |
NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side). | |
Doing so does not improve results. | |
""", | |
inputs=[ | |
gr.Video(), | |
gr.Text(label='Prompt'), | |
gr.Text(label='Negative prompt', value='music'), | |
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1), | |
gr.Number(label='Num steps', value=25, precision=0, minimum=1), | |
gr.Number(label='Guidance Strength', value=4.5, minimum=1), | |
gr.Number(label='Duration (sec)', value=8, minimum=1), | |
], | |
outputs='playable_video', | |
cache_examples=False, | |
title='Sonisphere - Sonic Branding Tool', | |
) | |
# text_to_audio_tab = gr.Interface( | |
# fn=text_to_audio, | |
# description=""" Text-to-Audio | |
# """, | |
# inputs=[ | |
# gr.Text(label='Prompt'), | |
# gr.Text(label='Negative prompt'), | |
# gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1), | |
# gr.Number(label='Num steps', value=25, precision=0, minimum=1), | |
# gr.Number(label='Guidance Strength', value=4.5, minimum=1), | |
# gr.Number(label='Duration (sec)', value=8, minimum=1), | |
# ], | |
# outputs='audio', | |
# cache_examples=False, | |
# title='Sonisphere - Sonic Branding Tool', | |
# ) | |
image_to_audio_tab = gr.Interface( | |
fn=image_to_audio, | |
description=""" | |
Image-to-Audio | |
NOTE: It takes longer to process high-resolution images (>384 px on the shorter side). | |
Doing so does not improve results. | |
""", | |
inputs=[ | |
gr.Image(type='filepath'), | |
gr.Text(label='Prompt'), | |
gr.Text(label='Negative prompt'), | |
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1), | |
gr.Number(label='Num steps', value=25, precision=0, minimum=1), | |
gr.Number(label='Guidance Strength', value=4.5, minimum=1), | |
gr.Number(label='Duration (sec)', value=8, minimum=1), | |
], | |
outputs='playable_video', | |
cache_examples=False, | |
title='Image-to-Audio Synthesis (experimental)', | |
) | |
if __name__ == "__main__": | |
# parser = ArgumentParser() | |
# parser.add_argument('--port', type=int, default=7860) | |
# args = parser.parse_args() | |
gr.TabbedInterface([video_to_audio_tab, image_to_audio_tab], | |
['Video-to-Audio', 'Image-to-Audio']).launch( | |
auth=("admin", "sonisphere"), | |
allowed_paths=[output_dir]) |