Spaces:
Running
Running
Merge pull request #22 from huggingface/speed-metric-caching
Browse files
app.py
CHANGED
@@ -58,7 +58,7 @@ TASK_TO_DEFAULT_METRICS = {
|
|
58 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
59 |
|
60 |
|
61 |
-
@st.
|
62 |
def get_supported_metrics():
|
63 |
metrics = [metric.id for metric in list_metrics()]
|
64 |
supported_metrics = []
|
@@ -104,9 +104,9 @@ st.markdown(
|
|
104 |
Welcome to Hugging Face's automatic model evaluator! This application allows
|
105 |
you to evaluate π€ Transformers
|
106 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
107 |
-
across a wide variety of datasets on the Hub. Please select
|
108 |
-
|
109 |
-
|
110 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
111 |
"""
|
112 |
)
|
@@ -128,6 +128,17 @@ selected_dataset = st.selectbox(
|
|
128 |
)
|
129 |
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
metadata = get_metadata(selected_dataset)
|
133 |
print(f"INFO -- Dataset metadata: {metadata}")
|
@@ -140,10 +151,19 @@ with st.expander("Advanced configuration"):
|
|
140 |
"Select a task",
|
141 |
SUPPORTED_TASKS,
|
142 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
|
|
|
|
143 |
)
|
144 |
# Select config
|
145 |
configs = get_dataset_config_names(selected_dataset)
|
146 |
-
selected_config = st.selectbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# Select splits
|
149 |
splits_resp = http_get(
|
@@ -166,6 +186,7 @@ with st.expander("Advanced configuration"):
|
|
166 |
"Select a split",
|
167 |
split_names,
|
168 |
index=split_names.index(eval_split) if eval_split is not None else 0,
|
|
|
169 |
)
|
170 |
|
171 |
# Select columns
|
@@ -180,7 +201,11 @@ with st.expander("Advanced configuration"):
|
|
180 |
).json()
|
181 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
182 |
|
183 |
-
st.markdown("**Map your
|
|
|
|
|
|
|
|
|
184 |
col1, col2 = st.columns(2)
|
185 |
|
186 |
# TODO: find a better way to layout these items
|
@@ -196,12 +221,12 @@ with st.expander("Advanced configuration"):
|
|
196 |
st.markdown("`target` column")
|
197 |
with col2:
|
198 |
text_col = st.selectbox(
|
199 |
-
"This column should contain the text
|
200 |
col_names,
|
201 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
|
202 |
)
|
203 |
target_col = st.selectbox(
|
204 |
-
"This column should contain the labels
|
205 |
col_names,
|
206 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
|
207 |
)
|
@@ -218,12 +243,12 @@ with st.expander("Advanced configuration"):
|
|
218 |
st.markdown("`tags` column")
|
219 |
with col2:
|
220 |
tokens_col = st.selectbox(
|
221 |
-
"This column should contain the array of tokens",
|
222 |
col_names,
|
223 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
224 |
)
|
225 |
tags_col = st.selectbox(
|
226 |
-
"This column should contain the labels
|
227 |
col_names,
|
228 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
|
229 |
)
|
@@ -240,12 +265,12 @@ with st.expander("Advanced configuration"):
|
|
240 |
st.markdown("`target` column")
|
241 |
with col2:
|
242 |
text_col = st.selectbox(
|
243 |
-
"This column should contain the text
|
244 |
col_names,
|
245 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
|
246 |
)
|
247 |
target_col = st.selectbox(
|
248 |
-
"This column should contain
|
249 |
col_names,
|
250 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
|
251 |
)
|
@@ -262,12 +287,12 @@ with st.expander("Advanced configuration"):
|
|
262 |
st.markdown("`target` column")
|
263 |
with col2:
|
264 |
text_col = st.selectbox(
|
265 |
-
"This column should contain the text
|
266 |
col_names,
|
267 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
|
268 |
)
|
269 |
target_col = st.selectbox(
|
270 |
-
"This column should contain
|
271 |
col_names,
|
272 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
|
273 |
)
|
@@ -313,7 +338,7 @@ with st.expander("Advanced configuration"):
|
|
313 |
index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
|
314 |
)
|
315 |
answers_start_col = st.selectbox(
|
316 |
-
"This column should contain the indices in the context of the first character of each answers.text",
|
317 |
col_names,
|
318 |
index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
|
319 |
)
|
@@ -350,7 +375,7 @@ with st.form(key="form"):
|
|
350 |
selected_models = st.multiselect(
|
351 |
"Select the models you wish to evaluate",
|
352 |
compatible_models,
|
353 |
-
help="""Don't see your model in this list? Add the dataset and task it was trained to the \
|
354 |
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
355 |
)
|
356 |
print("INFO -- Selected models before filter:", selected_models)
|
|
|
58 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
59 |
|
60 |
|
61 |
+
@st.experimental_memo
|
62 |
def get_supported_metrics():
|
63 |
metrics = [metric.id for metric in list_metrics()]
|
64 |
supported_metrics = []
|
|
|
104 |
Welcome to Hugging Face's automatic model evaluator! This application allows
|
105 |
you to evaluate π€ Transformers
|
106 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
107 |
+
across a wide variety of datasets on the Hub. Please select the dataset and
|
108 |
+
configuration below. The results of your evaluation will be displayed on the
|
109 |
+
[public
|
110 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
111 |
"""
|
112 |
)
|
|
|
128 |
)
|
129 |
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
130 |
|
131 |
+
# Check if selected dataset can be streamed
|
132 |
+
is_valid_dataset = http_get(
|
133 |
+
path="/is-valid",
|
134 |
+
domain=DATASETS_PREVIEW_API,
|
135 |
+
params={"dataset": selected_dataset},
|
136 |
+
).json()
|
137 |
+
if is_valid_dataset["valid"] is False:
|
138 |
+
st.error(
|
139 |
+
"""The dataset you selected is not currently supported. Open a \
|
140 |
+
[discussion](https://huggingface.co/spaces/autoevaluate/autoevaluate/discussions) for support."""
|
141 |
+
)
|
142 |
|
143 |
metadata = get_metadata(selected_dataset)
|
144 |
print(f"INFO -- Dataset metadata: {metadata}")
|
|
|
151 |
"Select a task",
|
152 |
SUPPORTED_TASKS,
|
153 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
154 |
+
help="""Don't see your favourite task here? Open a \
|
155 |
+
[discussion](https://huggingface.co/spaces/autoevaluate/autoevaluate/discussions) to request it!""",
|
156 |
)
|
157 |
# Select config
|
158 |
configs = get_dataset_config_names(selected_dataset)
|
159 |
+
selected_config = st.selectbox(
|
160 |
+
"Select a config",
|
161 |
+
configs,
|
162 |
+
help="""Some datasets contain several sub-datasets, known as _configurations_. \
|
163 |
+
Select one to evaluate your models on. \
|
164 |
+
See the [docs](https://huggingface.co/docs/datasets/master/en/load_hub#configurations) for more details.
|
165 |
+
""",
|
166 |
+
)
|
167 |
|
168 |
# Select splits
|
169 |
splits_resp = http_get(
|
|
|
186 |
"Select a split",
|
187 |
split_names,
|
188 |
index=split_names.index(eval_split) if eval_split is not None else 0,
|
189 |
+
help="Be wary when evaluating models on the `train` split.",
|
190 |
)
|
191 |
|
192 |
# Select columns
|
|
|
201 |
).json()
|
202 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
203 |
|
204 |
+
st.markdown("**Map your dataset columns**")
|
205 |
+
st.markdown(
|
206 |
+
"""The model evaluator uses a standardised set of column names for the input examples and labels. \
|
207 |
+
Please define the mapping between your dataset columns (right) and the standardised column names (left)."""
|
208 |
+
)
|
209 |
col1, col2 = st.columns(2)
|
210 |
|
211 |
# TODO: find a better way to layout these items
|
|
|
221 |
st.markdown("`target` column")
|
222 |
with col2:
|
223 |
text_col = st.selectbox(
|
224 |
+
"This column should contain the text to be classified",
|
225 |
col_names,
|
226 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
|
227 |
)
|
228 |
target_col = st.selectbox(
|
229 |
+
"This column should contain the labels associated with the text",
|
230 |
col_names,
|
231 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
|
232 |
)
|
|
|
243 |
st.markdown("`tags` column")
|
244 |
with col2:
|
245 |
tokens_col = st.selectbox(
|
246 |
+
"This column should contain the array of tokens to be classified",
|
247 |
col_names,
|
248 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
249 |
)
|
250 |
tags_col = st.selectbox(
|
251 |
+
"This column should contain the labels associated with each part of the text",
|
252 |
col_names,
|
253 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
|
254 |
)
|
|
|
265 |
st.markdown("`target` column")
|
266 |
with col2:
|
267 |
text_col = st.selectbox(
|
268 |
+
"This column should contain the text to be translated",
|
269 |
col_names,
|
270 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
|
271 |
)
|
272 |
target_col = st.selectbox(
|
273 |
+
"This column should contain the target translation",
|
274 |
col_names,
|
275 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
|
276 |
)
|
|
|
287 |
st.markdown("`target` column")
|
288 |
with col2:
|
289 |
text_col = st.selectbox(
|
290 |
+
"This column should contain the text to be summarized",
|
291 |
col_names,
|
292 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
|
293 |
)
|
294 |
target_col = st.selectbox(
|
295 |
+
"This column should contain the target summary",
|
296 |
col_names,
|
297 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
|
298 |
)
|
|
|
338 |
index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
|
339 |
)
|
340 |
answers_start_col = st.selectbox(
|
341 |
+
"This column should contain the indices in the context of the first character of each `answers.text`",
|
342 |
col_names,
|
343 |
index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
|
344 |
)
|
|
|
375 |
selected_models = st.multiselect(
|
376 |
"Select the models you wish to evaluate",
|
377 |
compatible_models,
|
378 |
+
help="""Don't see your model in this list? Add the dataset and task it was trained on to the \
|
379 |
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
380 |
)
|
381 |
print("INFO -- Selected models before filter:", selected_models)
|