Spaces:
Running
Running
shaocongma
Add a generator wrapper using configuration file. Edit the logic of searching references. Add Gradio UI for testing Knowledge database.
94dc00e
from utils.knowledge import Knowledge | |
from langchain.vectorstores import FAISS | |
from utils.file_operations import list_folders | |
from huggingface_hub import snapshot_download | |
import gradio as gr | |
import os | |
import json | |
from models import EMBEDDINGS | |
from utils.gpt_interaction import GPTModel | |
from utils.prompts import SYSTEM | |
import openai | |
llm = GPTModel(model="gpt-3.5-turbo") | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
REPO_ID = os.getenv("KDB_REPO") | |
if HF_TOKEN is not None and REPO_ID is not None: | |
snapshot_download(REPO_ID, repo_type="dataset", local_dir="knowledge_databases/", | |
local_dir_use_symlinks=False, token=HF_TOKEN) | |
ALL_KDB = ["(None)"] + list_folders("knowledge_databases") | |
ANNOUNCEMENT = """ | |
# Evaluate the quality of retrieved date from the FAISS database | |
Use this space test the performance of some pre-constructed vector databases hosted at `shaocongma/kdb`. To use this space for your own FAISS database, follow this instruction: | |
1. Duplicate this space. | |
2. Add the secret key `HF_TOKEN` with your own Huggingface User Access Token. | |
3. Create a Huggingface Dataset. Put your FAISS database to it. | |
4. Add the secret key `REPO_ID` as your dataset's address. | |
""" | |
AUTODRAFT = """ | |
AutoDraft is a GPT-based project to generate an academic paper using the title and contributions. When generating specific sections, AutoDraft will query some necessary backgrounds in related fields from the pre-constructed vector database. | |
""" | |
def query_from_kdb(input, kdb, query_counts): | |
if kdb == "(None)": | |
return {"knowledge_database": "(None)", "input": input, "output": ""}, "" | |
db_path = f"knowledge_databases/{kdb}" | |
db_config_path = os.path.join(db_path, "db_meta.json") | |
db_index_path = os.path.join(db_path, "faiss_index") | |
if os.path.isdir(db_path): | |
# load configuration file | |
with open(db_config_path, "r", encoding="utf-8") as f: | |
db_config = json.load(f) | |
model_name = db_config["embedding_model"] | |
embeddings = EMBEDDINGS[model_name] | |
db = FAISS.load_local(db_index_path, embeddings) | |
knowledge = Knowledge(db=db) | |
knowledge.collect_knowledge({input: query_counts}, max_query=query_counts) | |
domain_knowledge = knowledge.to_json() | |
else: | |
raise RuntimeError(f"Failed to query from FAISS.") | |
return domain_knowledge, "" | |
def query_from_kdb_llm(title, contributions, kdb, query_counts): | |
if kdb == "(None)": | |
return {"knowledge_database": "(None)", "title": title, "contributions": contributions, "output": ""}, "", {} | |
db_path = f"knowledge_databases/{kdb}" | |
db_config_path = os.path.join(db_path, "db_meta.json") | |
db_index_path = os.path.join(db_path, "faiss_index") | |
if os.path.isdir(db_path): | |
# load configuration file | |
with open(db_config_path, "r", encoding="utf-8") as f: | |
db_config = json.load(f) | |
model_name = db_config["embedding_model"] | |
embeddings = EMBEDDINGS[model_name] | |
db = FAISS.load_local(db_index_path, embeddings) | |
knowledge = Knowledge(db=db) | |
prompts = f"Title: {title}\n Contributions: {contributions}" | |
preliminaries_kw, _ = llm(systems=SYSTEM["preliminaries"], prompts=prompts, return_json=True) | |
knowledge.collect_knowledge(preliminaries_kw, max_query=query_counts) | |
domain_knowledge = knowledge.to_json() | |
else: | |
raise RuntimeError(f"Failed to query from FAISS.") | |
return domain_knowledge, "", preliminaries_kw | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(ANNOUNCEMENT) | |
kdb_dropdown = gr.Dropdown(choices=ALL_KDB, value="(None)", label="Knowledge Databases", | |
info="Pre-defined knowledge databases utilized to aid in the generation of academic writing content. " | |
"Hosted at `shaocongma/kdb`.") | |
with gr.Tab("User's Input"): | |
user_input = gr.Textbox(label="Input", info="Input anything you like to test what will be retrived from the vector database.") | |
with gr.Row(): | |
button_clear = gr.Button("Clear") | |
button_retrieval = gr.Button("Retrieve", variant="primary") | |
with gr.Tab("AutoDraft"): | |
gr.Markdown(AUTODRAFT) | |
title_input = gr.Textbox(label="Title") | |
contribution_input = gr.Textbox(label="Contributions", lines=5) | |
with gr.Row(): | |
button_clear_2 = gr.Button("Clear") | |
button_retrieval_2 = gr.Button("Retrieve", variant="primary") | |
with gr.Accordion("Advanced Setting", open=False): | |
query_counts_slider = gr.Slider(minimum=1, maximum=50, value=10, step=1, | |
interactive=True, label="QUERY_COUNTS", | |
info="How many contents will be retrieved from the vector database.") | |
with gr.Column(): | |
retrieval_output = gr.JSON(label="Output") | |
llm_kws = gr.JSON(label="Keywords generated by LLM") | |
button_retrieval.click(fn=query_from_kdb, | |
inputs=[user_input, kdb_dropdown, query_counts_slider], | |
outputs=[retrieval_output, user_input]) | |
button_retrieval_2.click(fn=query_from_kdb_llm, | |
inputs=[title_input, contribution_input, kdb_dropdown, query_counts_slider], | |
outputs=[retrieval_output, user_input, llm_kws]) | |
demo.queue(concurrency_count=1, max_size=5, api_open=False) | |
demo.launch(show_error=True) | |