auto-draft / utils /gpt_interaction.py
shaocongma
Reformat LLM interaction logic. Update prompts.
8d2591b
raw
history blame
4.57 kB
import os
import time
import openai
import logging
import requests
import json
log = logging.getLogger(__name__)
def get_gpt_responses(systems, prompts, model="gpt-4", temperature=0.4):
conversation_history = [
{"role": "system", "content": systems},
{"role": "user", "content": prompts}
]
response = openai.ChatCompletion.create(
model=model,
messages=conversation_history,
n=1, # Number of responses you want to generate
temperature=temperature, # Controls the creativity of the generated response
)
assistant_message = response['choices'][0]["message"]["content"]
usage = response['usage']
log.info(assistant_message)
return assistant_message, usage
class GPTModel_API2D_SUPPORT:
def __init__(self, model="gpt-4", temperature=0, presence_penalty=0,
frequency_penalty=0, url=None, key=None, max_attempts=1, delay=20):
if url is None:
url = "https://api.openai.com/v1/chat/completions"
if key is None:
key = os.getenv("OPENAI_API_KEY")
self.model = model
self.temperature = temperature
self.url = url
self.key = key
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.max_attempts = max_attempts
self.delay = delay
def __call__(self, systems, prompts, return_json=False):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.key}",
}
data = {
"model": f"{self.model}",
"messages": [
{"role": "system", "content": systems},
{"role": "user", "content": prompts}],
"temperature": self.temperature,
"n": 1,
"stream": False,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty
}
for _ in range(self.max_attempts):
try:
# todo: in some cases, UnicodeEncodeError is raised:
# 'gbk' codec can't encode character '\xdf' in position 1898: illegal multibyte sequence
response = requests.post(self.url, headers=headers, data=json.dumps(data))
response = response.json()
assistant_message = response['choices'][0]["message"]["content"]
usage = response['usage']
log.info(assistant_message)
if return_json:
assistant_message = json.loads(assistant_message)
return assistant_message, usage
except Exception as e:
print(f"Failed to get response. Error: {e}")
time.sleep(self.delay)
raise RuntimeError("Failed to get response from OpenAI.")
class GPTModel:
def __init__(self, model="gpt-4", temperature=0.9, presence_penalty=0,
frequency_penalty=0, max_attempts=1, delay=20):
self.model = model
self.temperature = temperature
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.max_attempts = max_attempts
self.delay = delay
def __call__(self, systems, prompts, return_json=False):
conversation_history = [
{"role": "system", "content": systems},
{"role": "user", "content": prompts}
]
for _ in range(self.max_attempts):
try:
response = openai.ChatCompletion.create(
model=self.model,
messages=conversation_history,
n=1,
temperature=self.temperature,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
stream=False
)
assistant_message = response['choices'][0]["message"]["content"]
usage = response['usage']
log.info(assistant_message)
if return_json:
assistant_message = json.loads(assistant_message)
return assistant_message, usage
except Exception as e:
print(f"Failed to get response. Error: {e}")
time.sleep(self.delay)
raise RuntimeError("Failed to get response from OpenAI.")
if __name__ == "__main__":
bot = GPTModel()
r = bot("You are an assistant.", "Hello.")
print(r)