Spaces:
Running
Running
import gradio as gr | |
import os | |
import openai | |
from auto_backgrounds import generate_backgrounds, generate_draft | |
from utils.file_operations import hash_name, list_folders | |
from references_generator import generate_top_k_references | |
# todo: | |
# 6. get logs when the procedure is not completed. * | |
# 7. 自己的文件库; 更多的prompts | |
# 2. 实现别的功能 | |
# 3. Check API Key GPT-4 Support. | |
# future: | |
# generation.log sometimes disappears (ignore this) | |
# 1. Check if there are any duplicated citations | |
# 2. Remove potential thebibliography and bibitem in .tex file | |
####################################################################################################################### | |
# Check if openai and cloud storage available | |
####################################################################################################################### | |
openai_key = os.getenv("OPENAI_API_KEY") | |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID') | |
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY') | |
if access_key_id is None or secret_access_key is None: | |
print("Access keys are not provided. Outputs cannot be saved to AWS Cloud Storage.\n") | |
IS_CACHE_AVAILABLE = False | |
else: | |
IS_CACHE_AVAILABLE = True | |
if openai_key is None: | |
print("OPENAI_API_KEY is not found in environment variables. The output may not be generated.\n") | |
IS_OPENAI_API_KEY_AVAILABLE = False | |
else: | |
openai.api_key = openai_key | |
try: | |
openai.Model.list() | |
IS_OPENAI_API_KEY_AVAILABLE = True | |
# except Exception as e: | |
except openai.error.AuthenticationError: | |
IS_OPENAI_API_KEY_AVAILABLE = False | |
DEFAULT_MODEL = "gpt-4" if IS_OPENAI_API_KEY_AVAILABLE else "gpt-3.5-turbo" | |
DEFAULT_SECTIONS = ["introduction", "related works", "backgrounds", "methodology", "experiments", | |
"conclusion", "abstract"] if IS_OPENAI_API_KEY_AVAILABLE \ | |
else ["introduction", "related works"] | |
####################################################################################################################### | |
# Load the list of templates & knowledge databases | |
####################################################################################################################### | |
ALL_TEMPLATES = list_folders("latex_templates") | |
ALL_DATABASES = ["(None)"] + list_folders("knowledge_databases") | |
####################################################################################################################### | |
# Gradio UI | |
####################################################################################################################### | |
theme = gr.themes.Default(font=gr.themes.GoogleFont("Questrial")) | |
# .set( | |
# background_fill_primary='#E5E4E2', | |
# background_fill_secondary = '#F6F6F6', | |
# button_primary_background_fill="#281A39" | |
# ) | |
ANNOUNCEMENT = """ | |
# Auto-Draft: 学术写作辅助工具 | |
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft功能的测试. | |
通过输入想要生成的论文名称(比如Playing atari with deep reinforcement learning),即可由AI辅助生成论文模板. | |
***2023-06-10 Update***: | |
pass | |
如果有更多想法和建议欢迎加入QQ群里交流, 如果我在Space里更新了Key我会第一时间通知大家. 群号: ***249738228***.""" | |
ACADEMIC_PAPER = """## 一键生成论文初稿 | |
1. 在Title文本框中输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning). | |
2. 点击Submit. 等待大概十五分钟(全文). | |
3. 在右侧下载.zip格式的输出,在Overleaf上编译浏览. | |
""" | |
REFERENCES = """## 一键搜索相关论文 | |
(此功能已经被整合进一键生成论文初稿) | |
1. 在Title文本框中输入想要搜索文献的论文(比如Playing Atari with Deep Reinforcement Learning). | |
2. 点击Submit. 等待大概十分钟. | |
3. 在右侧JSON处会显示相关文献. | |
""" | |
REFERENCES_INSTRUCTION = """### References | |
这一栏用于定义AI如何选取参考文献. 目前是两种方式混合: | |
1. GPT自动根据标题生成关键字,使用Semantic Scholar搜索引擎搜索文献,利用Specter获取Paper Embedding来自动选取最相关的文献作为GPT的参考资料. | |
2. 用户上传bibtex文件,使用Google Scholar搜索摘要作为GPT的参考资料. | |
关于有希望利用本地文件来供GPT参考的功能将在未来实装. | |
""" | |
DOMAIN_KNOWLEDGE_INSTRUCTION = """### Domain Knowledge | |
这一栏用于定义AI的知识库. 将提供两种选择: | |
1. 各个领域内由专家预先收集资料并构建的的FAISS向量数据库. 目前实装的数据库 | |
* (None): 不使用任何知识库 | |
* ml_textbook_test: 包含两本机器学习教材The Elements of Statistical Learning和Reinforcement Learning Theory and Algorithms. 仅用于测试知识库Pipeline. | |
2. 自行构建的使用OpenAI text-embedding-ada-002模型创建的FAISS向量数据库. (暂未实装) | |
""" | |
OUTPUTS_INSTRUCTION = """### Outputs | |
这一栏用于定义输出的内容: | |
* Template: 用于填装内容的LaTeX模板. | |
* Models: 使用GPT-4或者GPT-3.5-Turbo生成内容. | |
* Prompts模式: 不生成内容, 而是生成用于生成内容的Prompts. 可以手动复制到网页版或者其他语言模型中进行使用. | |
""" | |
OTHERS_INSTRUCTION = """### Others | |
""" | |
style_mapping = {True: "color:white;background-color:green", | |
False: "color:white;background-color:red"} # todo: to match website's style | |
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"} | |
STATUS = f'''## Huggingface Space Status | |
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用. | |
当`OpenAI API`显示NOT AVAILABLE的时候这个Space可以通过在左侧输入OPENAI KEY来使用. 需要有GPT-4的API权限. | |
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用. | |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''' | |
def clear_inputs(*args): | |
return "", "" | |
def clear_inputs_refs(*args): | |
return "", 5 | |
def wrapped_generator( | |
paper_title, paper_description, # main input | |
openai_api_key=None, openai_url=None, # key | |
tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references | |
knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge | |
paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters | |
cache_mode=IS_CACHE_AVAILABLE # handle cache mode | |
): | |
# if `cache_mode` is True, then follow the following steps: | |
# check if "title"+"description" have been generated before | |
# if so, download from the cloud storage, return it | |
# if not, generate the result. | |
if bib_refs is not None: | |
bib_refs = bib_refs.name | |
if openai_api_key is not None: | |
openai.api_key = openai_api_key | |
try: | |
openai.Model.list() | |
except Exception as e: | |
raise gr.Error(f"Key错误. Error: {e}") | |
if cache_mode: | |
from utils.storage import list_all_files, download_file | |
# check if "title"+"description" have been generated before | |
input_dict = {"title": paper_title, "description": paper_description, | |
"generator": "generate_draft"} | |
file_name = hash_name(input_dict) + ".zip" | |
file_list = list_all_files() | |
# print(f"{file_name} will be generated. Check the file list {file_list}") | |
if file_name in file_list: | |
# download from the cloud storage, return it | |
download_file(file_name) | |
return file_name | |
try: | |
output = generate_draft( | |
paper_title, description=paper_description, # main input | |
tldr=tldr, max_kw_refs=max_kw_refs, bib_refs=bib_refs, max_tokens_ref=max_tokens_ref, # references | |
knowledge_database=knowledge_database, max_tokens_kd=max_tokens_kd, query_counts=query_counts, # domain knowledge | |
sections=selected_sections, model=model, template=paper_template, prompts_mode=prompts_mode, # outputs parameters | |
) | |
if cache_mode: | |
from utils.storage import upload_file | |
upload_file(output) | |
except Exception as e: | |
raise gr.Error(f"生成失败. Error: {e}") | |
return output | |
def wrapped_references_generator(paper_title, num_refs, openai_api_key=None): | |
if openai_api_key is not None: | |
openai.api_key = openai_api_key | |
openai.Model.list() | |
return generate_top_k_references(paper_title, top_k=num_refs) | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(ANNOUNCEMENT) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key", | |
visible=not IS_OPENAI_API_KEY_AVAILABLE) | |
url = gr.Textbox(value=None, lines=1, max_lines=1, label="URL", | |
visible=False) | |
# 每个功能做一个tab | |
with gr.Tab("学术论文"): | |
gr.Markdown(ACADEMIC_PAPER) | |
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1, | |
label="Title", info="论文标题") | |
description_pp = gr.Textbox(lines=5, label="Description (Optional)", visible=True, | |
info="这篇论文的主要贡献和创新点. (生成所有章节时共享这个信息, 保持生成的一致性.)") | |
with gr.Accordion("高级设置", open=False): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown(OUTPUTS_INSTRUCTION) | |
with gr.Column(scale=2): | |
with gr.Row(): | |
template = gr.Dropdown(label="Template", choices=ALL_TEMPLATES, value="Default", | |
interactive=True, | |
info="生成论文的模板.") | |
model_selection = gr.Dropdown(label="Model", choices=["gpt-4", "gpt-3.5-turbo"], | |
value=DEFAULT_MODEL, | |
interactive=True, | |
info="生成论文用到的语言模型.") | |
prompts_mode = gr.Checkbox(value=False, visible=True, interactive=True, | |
label="Prompts模式", | |
info="只输出用于生成论文的Prompts, 可以复制到别的地方生成论文.") | |
sections = gr.CheckboxGroup( | |
choices=["introduction", "related works", "backgrounds", "methodology", "experiments", | |
"conclusion", "abstract"], | |
type="value", label="生成章节", interactive=True, info="选择生成论文的哪些章节.", | |
value=DEFAULT_SECTIONS) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown(REFERENCES_INSTRUCTION) | |
with gr.Column(scale=2): | |
max_kw_ref_slider = gr.Slider(minimum=1, maximum=20, value=10, step=1, | |
interactive=True, label="MAX_KW_REFS", | |
info="每个Keyword搜索几篇参考文献", visible=False) | |
max_tokens_ref_slider = gr.Slider(minimum=256, maximum=4096, value=2048, step=2, | |
interactive=True, label="MAX_TOKENS", | |
info="参考文献内容占用Prompts中的Token数") | |
tldr_checkbox = gr.Checkbox(value=True, label="TLDR;", | |
info="选择此筐表示将使用Semantic Scholar的TLDR作为文献的总结.", | |
interactive=True) | |
gr.Markdown(''' | |
上传.bib文件提供AI需要参考的文献. | |
''') | |
bibtex_file = gr.File(label="Upload .bib file", file_types=["text"], | |
interactive=True) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown(DOMAIN_KNOWLEDGE_INSTRUCTION) | |
with gr.Column(scale=2): | |
query_counts_slider = gr.Slider(minimum=1, maximum=20, value=10, step=1, | |
interactive=True, label="QUERY_COUNTS", | |
info="从知识库内检索多少条内容", visible=False) | |
max_tokens_kd_slider = gr.Slider(minimum=256, maximum=4096, value=2048, step=2, | |
interactive=True, label="MAX_TOKENS", | |
info="知识库内容占用Prompts中的Token数") | |
# template = gr.Dropdown(label="Template", choices=ALL_TEMPLATES, value="Default", | |
# interactive=True, | |
# info="生成论文的参考模板.") | |
domain_knowledge = gr.Dropdown(label="预载知识库", | |
choices=ALL_DATABASES, | |
value="(None)", | |
interactive=True, | |
info="使用预先构建的知识库.") | |
local_domain_knowledge = gr.File(label="本地知识库 (暂未实装)", interactive=False) | |
with gr.Row(): | |
clear_button_pp = gr.Button("Clear") | |
submit_button_pp = gr.Button("Submit", variant="primary") | |
# with gr.Tab("文献搜索"): | |
# gr.Markdown(REFERENCES) | |
# | |
# title_refs = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1, | |
# label="Title", info="论文标题") | |
# slider_refs = gr.Slider(minimum=1, maximum=100, value=5, step=1, | |
# interactive=True, label="最相关的参考文献数目") | |
# with gr.Row(): | |
# clear_button_refs = gr.Button("Clear") | |
# submit_button_refs = gr.Button("Submit", variant="primary") | |
with gr.Tab("文献综述 (Coming soon!)"): | |
gr.Markdown(''' | |
<h1 style="text-align: center;">Coming soon!</h1> | |
''') | |
with gr.Tab("Github文档 (Coming soon!)"): | |
gr.Markdown(''' | |
<h1 style="text-align: center;">Coming soon!</h1> | |
''') | |
with gr.Column(scale=1): | |
gr.Markdown(STATUS) | |
file_output = gr.File(label="Output") | |
json_output = gr.JSON(label="References") | |
# def wrapped_generator( | |
# paper_title, paper_description, # main input | |
# openai_api_key=None, openai_url=None, # key | |
# tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references | |
# knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge | |
# paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters | |
# cache_mode=IS_CACHE_AVAILABLE # handle cache mode | |
# ): | |
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp]) | |
submit_button_pp.click(fn=wrapped_generator, | |
inputs=[title, description_pp, key, url, | |
tldr_checkbox, max_kw_ref_slider, bibtex_file, max_tokens_ref_slider, | |
domain_knowledge, max_tokens_kd_slider, query_counts_slider, | |
template, sections, model_selection, prompts_mode], outputs=file_output) | |
# clear_button_refs.click(fn=clear_inputs_refs, inputs=[title_refs, slider_refs], outputs=[title_refs, slider_refs]) | |
# submit_button_refs.click(fn=wrapped_references_generator, | |
# inputs=[title_refs, slider_refs, key], outputs=json_output) | |
demo.queue(concurrency_count=1, max_size=5, api_open=False) | |
demo.launch(show_error=True) | |