Spaces:
Paused
Paused
austinsilveria
commited on
Commit
•
33ad5e9
1
Parent(s):
4296400
take out the trash
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
from threading import Thread
|
|
|
|
|
2 |
|
3 |
import streamlit as st
|
4 |
|
@@ -7,43 +9,57 @@ from transformers import AutoTokenizer, TextIteratorStreamer, set_seed
|
|
7 |
from modeling_tricksy import TricksyOPTForCausalLM, OPTDiskWeights
|
8 |
from configuration_tricksy import TricksyConfig
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
model_name = 'facebook/opt-6.7b'
|
15 |
-
disk_weights = OPTDiskWeights(model_name)
|
16 |
-
tricksy_model = TricksyOPTForCausalLM(TricksyConfig(disk_weights.config, full_offload=(not use_tricksy)), disk_weights)
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
-
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
19 |
-
|
20 |
-
inputs = tokenizer(prompt, return_tensors='pt').input_ids.to('cuda')
|
21 |
-
|
22 |
-
print()
|
23 |
-
generation_kwargs = dict(inputs=inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, top_p=top_p)
|
24 |
-
thread = Thread(target=tricksy_model.generate, kwargs=generation_kwargs)
|
25 |
-
thread.start()
|
26 |
-
generated_text = ''
|
27 |
-
with st.chat_message("user"):
|
28 |
-
t = st.empty()
|
29 |
-
for new_text in streamer:
|
30 |
-
generated_text += new_text.replace('\n', ' \n')
|
31 |
-
t.write(generated_text)
|
32 |
-
|
33 |
-
stats_text = f'Decoding tok/s: {1 / (sum(tricksy_model.tricksy_context.forward_times[1:]) / (len(tricksy_model.tricksy_context.forward_times) - 1))}'
|
34 |
-
stats_text += f' \nCurrent GPU mem usage: {torch.cuda.memory_allocated("cuda") / 1024 ** 3} GB'
|
35 |
-
stats_text += f' \nMax GPU mem usage: {torch.cuda.max_memory_allocated("cuda") / 1024 ** 3} GB'
|
36 |
-
st.write(stats_text)
|
37 |
|
38 |
prompt = st.text_area('Prompt', 'Making pesto from scratch can be done with these ingredients in 4 simple steps:\nStep 1')
|
39 |
|
40 |
col1, col2 = st.columns(2)
|
41 |
-
with col1:
|
42 |
-
submit = st.button('Submit', on_click=generate)
|
43 |
-
with col2:
|
44 |
-
use_tricksy = st.toggle('Use Tricksy', True, help='If true, only send sparse MLP weight diffs to GPU. If false, send all weights to GPU.')
|
45 |
|
46 |
with st.expander('Additional options'):
|
47 |
-
max_new_tokens = st.slider('Max new tokens', 1, 500,
|
48 |
top_k = st.slider('Top-k sampling', 1, 500, 50)
|
49 |
-
top_p = st.slider('Top-p (nucleus sampling)', 0.0, 1.0, .9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from threading import Thread
|
2 |
+
import gc
|
3 |
+
import time
|
4 |
|
5 |
import streamlit as st
|
6 |
|
|
|
9 |
from modeling_tricksy import TricksyOPTForCausalLM, OPTDiskWeights
|
10 |
from configuration_tricksy import TricksyConfig
|
11 |
|
12 |
+
if 'submit' in st.session_state and st.session_state.submit == True:
|
13 |
+
st.session_state.generating = True
|
14 |
+
else:
|
15 |
+
st.session_state.generating = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
prompt = st.text_area('Prompt', 'Making pesto from scratch can be done with these ingredients in 4 simple steps:\nStep 1')
|
18 |
|
19 |
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
20 |
|
21 |
with st.expander('Additional options'):
|
22 |
+
max_new_tokens = st.slider('Max new tokens', 1, 500, 50)
|
23 |
top_k = st.slider('Top-k sampling', 1, 500, 50)
|
24 |
+
top_p = st.slider('Top-p (nucleus sampling)', 0.0, 1.0, .9)
|
25 |
+
|
26 |
+
out = st.chat_message('user')
|
27 |
+
stats = st.empty()
|
28 |
+
|
29 |
+
with col1:
|
30 |
+
use_tricksy = st.toggle('Use Tricksy', True, help='If true, only send sparse MLP weight diffs to GPU. If false, send all weights to GPU.')
|
31 |
+
with col2:
|
32 |
+
if st.button('Submit', disabled=st.session_state.generating, key='submit'):
|
33 |
+
set_seed(42)
|
34 |
+
# 13.4 GB (16 bit)
|
35 |
+
model_name = 'facebook/opt-6.7b'
|
36 |
+
disk_weights = OPTDiskWeights(model_name)
|
37 |
+
tricksy_model = TricksyOPTForCausalLM(TricksyConfig(disk_weights.config, full_offload=(not use_tricksy)), disk_weights)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
40 |
+
|
41 |
+
inputs = tokenizer(prompt, return_tensors='pt').input_ids.to('cuda')
|
42 |
+
|
43 |
+
print()
|
44 |
+
generation_kwargs = dict(inputs=inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, top_p=top_p)
|
45 |
+
thread = Thread(target=tricksy_model.generate, kwargs=generation_kwargs)
|
46 |
+
thread.start()
|
47 |
+
generated_text = ''
|
48 |
+
with out:
|
49 |
+
t = st.empty()
|
50 |
+
for new_text in streamer:
|
51 |
+
generated_text += new_text.replace('\n', ' \n')
|
52 |
+
t.write(generated_text)
|
53 |
+
|
54 |
+
stats_text = f'Decoding tok/s: {1 / (sum(tricksy_model.tricksy_context.forward_times[1:]) / (len(tricksy_model.tricksy_context.forward_times) - 1))}'
|
55 |
+
stats_text += f' \nCurrent GPU mem usage: {torch.cuda.memory_allocated("cuda") / 1024 ** 3} GB'
|
56 |
+
stats_text += f' \nMax GPU mem usage: {torch.cuda.max_memory_allocated("cuda") / 1024 ** 3} GB'
|
57 |
+
stats.write(stats_text)
|
58 |
+
|
59 |
+
disk_weights = None
|
60 |
+
tricksy_model = None
|
61 |
+
time.sleep(.2)
|
62 |
+
# st.write(f'num open files: {len(psutil.Process().open_files())}')
|
63 |
+
torch.cuda.empty_cache()
|
64 |
+
gc.collect()
|
65 |
+
torch.cuda.reset_peak_memory_stats()
|