tricksy / modeling_tricksy.py
austinsilveria's picture
switch to gradio for concurrency management
2f9c62d
from typing import Any, Optional, Callable, List, Tuple
import os
import time
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from accelerate import init_empty_weights
from transformers.activations import ACT2FN
from transformers.generation import GenerationConfig
from transformers.models.opt.modeling_opt import (
OPTAttention,
OPTDecoder,
OPTDecoderLayer,
OPTForCausalLM,
OPTModel,
)
from transformers.models.opt.configuration_opt import OPTConfig
from huggingface_hub import snapshot_download
from configuration_tricksy import TricksyConfig
from util import batch_copy, compute_index_diffs, load_mlp_sparsity_predictor, mmap_to_tensor, topk_and_threshold
TRICKSY_WEIGHTS_PATH = 'tricksy-weights/'
class SparseMLPCache:
def __init__(
self,
indexed_fc1_weight: Optional[torch.Tensor] = None,
indexed_fc1_bias: Optional[torch.Tensor] = None,
indexed_fc2_weight: Optional[torch.Tensor] = None,
gpu_cached_mlp_indices: Optional[torch.Tensor] = None,
):
# [ffn_embed_dim * min_mlp_sparsity, hidden_size]
self.indexed_fc1_weight = indexed_fc1_weight
# [ffn_embed_dim * min_mlp_sparsity]
self.indexed_fc1_bias = indexed_fc1_bias
# [ffn_embed_dim * min_mlp_sparsity, hidden_size] (stored in transpose for efficient indexing)
self.indexed_fc2_weight = indexed_fc2_weight
# Indices that are already on GPU (this tensor is stored on the CPU)
# [ffn_embed_dim * min_mlp_sparsity]
self.gpu_cached_mlp_indices = gpu_cached_mlp_indices
class SparseIndices:
def __init__(self, tricksy_config: TricksyConfig, opt_config: OPTConfig):
self.mlp_indices_buffer_gpu = torch.empty(
(int(opt_config.ffn_dim * tricksy_config.min_mlp_sparsity_gpu),),
dtype=torch.int32,
device='cuda'
)
self.mlp_indices_buffer_cpu = torch.empty(
(int(opt_config.ffn_dim * tricksy_config.min_mlp_sparsity_gpu),),
dtype=torch.int32,
device='cpu',
pin_memory=True,
)
# Default stream blocks until indices are copied to CPU
self.index_copy_stream = torch.cuda.default_stream()
def copy_mlp_indices_to_cpu(self):
self.mlp_indices_buffer_cpu = batch_copy([self.mlp_indices_buffer_gpu], self.index_copy_stream, device='cpu')[0]
class OPTDiskWeights:
def __init__(self, model_name: str):
self.model_name = model_name
self.model_suffix = model_name.split('/')[-1]
self.config = OPTConfig.from_pretrained(model_name)
try:
print(f'downloading from austinsilveria/tricksy-{self.model_suffix}')
self.weight_path = snapshot_download(repo_id=f'austinsilveria/tricksy-{self.model_suffix}') + '/'
except:
print(f'failed to download from austinsilveria/tricksy-{self.model_suffix}')
self.weight_path = f'{TRICKSY_WEIGHTS_PATH}{self.model_suffix}/'
with init_empty_weights():
model = OPTModel(self.config)
self.state_dict = model.state_dict()
if not os.path.exists(f'{self.weight_path}decoder.embed_tokens.weight'):
# Download original weights and write memmap files
print(f'downloading and preprocessing original weights')
self.cache_weights()
head_dim = self.config.hidden_size // self.config.num_attention_heads
for i in range(self.config.num_hidden_layers):
layer_prefix = f'decoder.layers.{i}.'
self.delete_weights([
f'{layer_prefix}self_attn.q_proj.weight',
f'{layer_prefix}self_attn.k_proj.weight',
f'{layer_prefix}self_attn.v_proj.weight',
f'{layer_prefix}self_attn.out_proj.weight',
f'{layer_prefix}self_attn.q_proj.bias',
f'{layer_prefix}self_attn.k_proj.bias',
f'{layer_prefix}self_attn.v_proj.bias'
])
self.add_weights([
(f'{layer_prefix}fc2.weight', (self.config.ffn_dim, self.config.hidden_size)),
(f'{layer_prefix}self_attn.catted_head_weights', (self.config.num_attention_heads, head_dim * 4, self.config.hidden_size)),
(f'{layer_prefix}self_attn.catted_head_biases', (self.config.num_attention_heads, 3, head_dim)),
])
self.memmap_weights = { key: self.load_memmap_weight(key) for key in self.state_dict.keys() }
def load_memmap_weight(self, key: str):
return torch.from_numpy(np.memmap(f'{self.weight_path}{key}', dtype='float16', mode='r', shape=(self.state_dict[key].shape)))
def add_weights(self, weights: List[Tuple[str, torch.Size]]):
for key, shape in weights:
self.state_dict[key] = torch.empty(shape, dtype=torch.float16, device='meta')
def delete_weights(self, keys: List[str]):
for key in keys:
if key in self.state_dict:
del self.state_dict[key]
path = f'{self.weight_path}{key}'
if os.path.exists(path):
os.remove(path)
def cache_weights(self):
os.makedirs(self.weight_path, exist_ok=True)
weights_location = snapshot_download(repo_id=self.model_name, ignore_patterns=['flax*', 'tf*'])
shards = [file for file in os.listdir(weights_location) if file.startswith("pytorch_model") and file.endswith(".bin")]
for shard in shards:
print(f'caching {shard}')
shard_path = os.path.join(weights_location, shard)
shard_state_dict = torch.load(shard_path)
for key in shard_state_dict.keys():
path = f'{self.weight_path}{key.replace("model.", "")}'
memmap = np.memmap(path, dtype='float16', mode='w+', shape=(shard_state_dict[key].shape))
memmap[:] = shard_state_dict[key].cpu().numpy()
# Store weights in shape for efficient indexing
for i in range(self.config.num_hidden_layers):
layer_prefix = f'decoder.layers.{i}.'
# FC2 in transpose
fc2t = torch.from_numpy(np.array(self.load_memmap_weight(f'{layer_prefix}fc2.weight')[:])).t().contiguous().clone()
np.memmap(f'{self.weight_path}decoder.layers.{i}.fc2.weight', dtype='float16', mode='w+', shape=fc2t.shape)[:] = fc2t.numpy()
# Attention weights by head
head_dim = self.config.hidden_size // self.config.num_attention_heads
qw = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.q_proj.weight')[:])
kw = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.k_proj.weight')[:])
vw = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.v_proj.weight')[:])
ow = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.out_proj.weight')[:])
pre_cat_shape = (self.config.num_attention_heads, head_dim, self.config.hidden_size)
# [head, head_dim * 4, hidden_size]
catted_head_weights = torch.cat(
[qw.view(pre_cat_shape).clone(), kw.view(pre_cat_shape).clone(), vw.view(pre_cat_shape).clone(), ow.T.view(pre_cat_shape).clone(),],
dim=1,
).contiguous().clone()
np.memmap(f'{self.weight_path}{layer_prefix}self_attn.catted_head_weights', dtype='float16', mode='w+', shape=catted_head_weights.shape)[:] =\
catted_head_weights.numpy()
# Attention biases by head
qb = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.q_proj.bias')[:])
kb = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.k_proj.bias')[:])
vb = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.v_proj.bias')[:])
pre_cat_shape = (self.config.num_attention_heads, 1, head_dim)
# [head, 3, head_dim]
catted_head_biases = torch.cat(
# Don't index out bias since we need all dims after projecting back up to hidden size
[qb.view(pre_cat_shape).clone(), kb.view(pre_cat_shape).clone(), vb.view(pre_cat_shape).clone()],
dim=1,
).contiguous().clone()
np.memmap(f'{self.weight_path}{layer_prefix}self_attn.catted_head_biases', dtype='float16', mode='w+', shape=catted_head_biases.shape)[:] =\
catted_head_biases.numpy()
self.delete_weights([
f'{layer_prefix}self_attn.q_proj.weight',
f'{layer_prefix}self_attn.k_proj.weight',
f'{layer_prefix}self_attn.v_proj.weight',
f'{layer_prefix}self_attn.out_proj.weight',
f'{layer_prefix}self_attn.q_proj.bias',
f'{layer_prefix}self_attn.k_proj.bias',
f'{layer_prefix}self_attn.v_proj.bias'
])
self.add_weights([
(f'{layer_prefix}self_attn.catted_head_weights', catted_head_weights.shape),
(f'{layer_prefix}self_attn.catted_head_biases', catted_head_biases.shape),
])
class TricksyContext:
def __init__(self, tricksy_config: TricksyConfig, opt_config: OPTConfig):
self.indices = SparseIndices(tricksy_config, opt_config)
self.load_weight_stream = torch.cuda.Stream()
self.layer = 0
self.is_prompt_phase = True
self.forward_times = []
class TricksyLayer:
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.forward(*args, **kwds)
def load_weights(self, tricksy_context: TricksyContext):
pass
class TricksyLayerInputs:
def __init__(
self,
disk_weights: OPTDiskWeights,
layer_key_prefix: str = None,
next_layer: TricksyLayer = None,
sparsity_predictors: List[Callable[[torch.Tensor], torch.Tensor]] = None,
) -> None:
self.disk_weights = disk_weights
# self.get_weight = lambda key: self.disk_weights.load_memmap_weight(f'{layer_key_prefix}{key}')
self.get_weight = lambda key: self.disk_weights.memmap_weights[(f'{layer_key_prefix}{key}')]
self.layer_key_prefix = layer_key_prefix
self.next_layer = next_layer
self.sparsity_predictors = sparsity_predictors
class TricksyOPTLearnedPositionalEmbedding(TricksyLayer):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, tricksy_context):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.tricksy_context = tricksy_context
self.weight = None
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.forward(*args, **kwds)
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = attention_mask.long()
# create positions depending on attention_mask
positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
out = F.embedding(positions + self.offset, self.weight)
return out
class TricksyOPTAttention(OPTAttention, TricksyLayer):
def __init__(self, tricksy_config: TricksyConfig, inputs: TricksyLayerInputs, tricksy_context: TricksyContext, is_decoder: bool = False, **kwargs):
nn.Module.__init__(self)
self.tricksy_config = tricksy_config
self.config = tricksy_config.opt_config
def _handle_deprecated_argument(config_arg_name, config, fn_arg_name, kwargs):
"""
If a the deprecated argument `fn_arg_name` is passed, raise a deprecation
warning and return that value, otherwise take the equivalent config.config_arg_name
"""
val = None
if fn_arg_name in kwargs:
print(
"Passing in {} to {self.__class__.__name__} is deprecated and won't be supported from v4.38."
" Please set it in the config instead"
)
val = kwargs.pop(fn_arg_name)
else:
val = getattr(config, config_arg_name)
return val
self.embed_dim = _handle_deprecated_argument("hidden_size", self.config, "embed_dim", kwargs)
self.num_heads = _handle_deprecated_argument("num_attention_heads", self.config, "num_heads", kwargs)
self.dropout = _handle_deprecated_argument("attention_dropout", self.config, "dropout", kwargs)
self.enable_bias = _handle_deprecated_argument("enable_bias", self.config, "bias", kwargs)
self.head_dim = self.embed_dim // self.num_heads
self.is_causal = True
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
# [Tricksy]
self.tricksy_context = tricksy_context
self.inputs = inputs
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
self.qw = self.kw = self.vw = self.ow = self.qb = self.kb = self.vb = self.out_proj_bias = self.layer_norm_weight = self.layer_norm_bias = None
self.q_proj = lambda x: F.linear(x, self.qw, self.qb)
self.k_proj = lambda x: F.linear(x, self.kw, self.kb)
self.v_proj = lambda x: F.linear(x, self.vw, self.vb)
self.out_proj = lambda x: F.linear(x, self.ow, self.out_proj_bias)
self.layer_norm = lambda x: F.layer_norm(x, (self.config.hidden_size,), self.layer_norm_weight, self.layer_norm_bias)
def clear(self):
self.qw = self.kw = self.vw = self.ow = self.qb = self.kb = self.vb = self.out_proj_bias = self.layer_norm_weight = self.layer_norm_bias = None
def load_weights(self, tricksy_context: TricksyContext):
if self.tricksy_context.is_prompt_phase:
# Full weights for prompt phase
self.catted_weights, self.catted_biases, self.out_proj_bias, self.layer_norm_weight, self.layer_norm_bias = batch_copy(
[
mmap_to_tensor(self.inputs.get_weight('self_attn.catted_head_weights')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn.catted_head_biases')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn.out_proj.bias')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn_layer_norm.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn_layer_norm.bias')[:], pin_memory=True),
],
tricksy_context.load_weight_stream,
)
torch.cuda.synchronize()
# Weights stored in shape for efficient indexing to support offloading attention heads (not currently being done)
self.qw = self.catted_weights[:, :self.head_dim, :].reshape(self.config.hidden_size, self.config.hidden_size).contiguous()
self.kw = self.catted_weights[:, self.head_dim:self.head_dim * 2, :].reshape(self.config.hidden_size, self.config.hidden_size).contiguous()
self.vw = self.catted_weights[:, self.head_dim * 2:self.head_dim * 3, :].reshape(self.config.hidden_size, self.config.hidden_size).contiguous()
self.ow = self.catted_weights[:, self.head_dim * 3:, :].reshape(self.config.hidden_size, self.config.hidden_size).t().contiguous()
self.catted_weights = None
self.qb = self.catted_biases[:, 0, :].reshape(self.config.hidden_size).contiguous()
self.kb = self.catted_biases[:, 1, :].reshape(self.config.hidden_size).contiguous()
self.vb = self.catted_biases[:, 2, :].reshape(self.config.hidden_size).contiguous()
self.catted_biases = None
def forward(self, hidden_states, **kwargs):
# Wait for attention weights to get to GPU
torch.cuda.synchronize()
# Predict MLP sparsity based on attention input
self.tricksy_context.indices.mlp_indices_buffer_gpu = topk_and_threshold(
self.inputs.sparsity_predictors[0](hidden_states)[0, -1, :],
int(self.config.ffn_dim * self.tricksy_config.min_mlp_sparsity_gpu),
)
self.tricksy_context.indices.copy_mlp_indices_to_cpu()
torch.cuda.synchronize()
# Load MLP weights while computing attention
self.inputs.next_layer.load_weights(self.tricksy_context)
out = super().forward(self.layer_norm(hidden_states), **kwargs)
# Wait for MLP weights to get to GPU
torch.cuda.synchronize()
return out
class TricksyOPTDecoderLayer(OPTDecoderLayer):
def __init__(self, tricksy_config: TricksyConfig, inputs: TricksyLayerInputs, tricksy_context: TricksyContext):
nn.Module.__init__(self)
self.tricksy_config = tricksy_config
self.config = tricksy_config.opt_config
self.embed_dim = self.config.hidden_size
self.tricksy_context = tricksy_context
self.self_attn_layer_inputs = TricksyLayerInputs(
disk_weights=inputs.disk_weights,
layer_key_prefix=inputs.layer_key_prefix,
# While computing attention, load MLP
next_layer=self,
sparsity_predictors=inputs.sparsity_predictors,
)
self.self_attn = TricksyOPTAttention(tricksy_config, self.self_attn_layer_inputs, tricksy_context, is_decoder=True)
self.do_layer_norm_before = self.config.do_layer_norm_before
self.dropout = self.config.dropout
self.activation_fn = ACT2FN[self.config.activation_function]
self.inputs = inputs
random_mlp_indices_gpu =\
torch.randperm(self.config.ffn_dim, device='cpu', dtype=torch.int32)[:int(self.config.ffn_dim * self.tricksy_config.min_mlp_sparsity_gpu)]
self.index_cache = SparseMLPCache(gpu_cached_mlp_indices=random_mlp_indices_gpu)
# identity since we move this to attention layer
# extreme tricksy
self.self_attn_layer_norm = lambda x: x
self.fc1_weight = self.fc2_weight = self.final_layer_norm_weight = self.fc1_bias = self.fc2_bias = self.final_layer_norm_bias = None
self.ring_idx = 0
self.fc1_weight_diff = self.fc2_weight_diff = self.fc1_bias_diff = None
self.fc1 = lambda x: F.linear(x, torch.cat([self.fc1_weight, self.fc1_weight_diff]), torch.cat([self.fc1_bias, self.fc1_bias_diff]))
self.fc2 = lambda x: F.linear(x, torch.cat([self.fc2_weight, self.fc2_weight_diff]).T, self.fc2_bias)
self.final_layer_norm = lambda x: F.layer_norm(x, (self.embed_dim,), self.final_layer_norm_weight, self.final_layer_norm_bias)
def clear(self):
self.fc1_weight = self.fc2_weight = self.final_layer_norm_weight = self.fc1_bias = self.fc2_bias = self.final_layer_norm_bias = None
self.fc1_weight_diff = self.fc2_weight_diff = self.fc1_bias_diff = None
def load_weights(self, tricksy_context: TricksyContext):
if self.tricksy_context.is_prompt_phase:
# Full weights for prompt phase
fc1w = mmap_to_tensor(self.inputs.get_weight('fc1.weight')[:], pin_memory=True)
fc1b = mmap_to_tensor(self.inputs.get_weight('fc1.bias')[:], pin_memory=True)
fc2w = mmap_to_tensor(self.inputs.get_weight('fc2.weight')[:], pin_memory=True)
fc2b = mmap_to_tensor(self.inputs.get_weight('fc2.bias')[:], pin_memory=True)
lnw = mmap_to_tensor(self.inputs.get_weight('final_layer_norm.weight')[:], pin_memory=True)
lnb = mmap_to_tensor(self.inputs.get_weight('final_layer_norm.bias')[:], pin_memory=True)
self.fc1_weight, self.fc1_bias, self.fc2_weight, self.fc2_bias, self.final_layer_norm_weight, self.final_layer_norm_bias =\
batch_copy([fc1w, fc1b, fc2w, fc2b, lnw, lnb], tricksy_context.load_weight_stream)
self.fc1_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
index_diffs = compute_index_diffs(tricksy_context.indices.mlp_indices_buffer_cpu, [self.index_cache.gpu_cached_mlp_indices])
if len(index_diffs) > 0:
gpu_index_diff = index_diffs[0]
self.index_cache.gpu_cached_mlp_indices[gpu_index_diff.off_positions] = gpu_index_diff.off_elements
self.index_cache.indexed_fc1_weight = fc1w.contiguous().pin_memory()
self.index_cache.indexed_fc1_bias = fc1b.contiguous().pin_memory()
self.index_cache.indexed_fc2_weight = fc2w.contiguous().pin_memory()
return
elif self.fc1_weight is None:
# Full weights if full offload
self.fc1_weight, self.fc1_bias, self.fc2_weight = batch_copy(
[self.index_cache.indexed_fc1_weight, self.index_cache.indexed_fc1_bias, self.index_cache.indexed_fc2_weight],
tricksy_context.load_weight_stream
)
self.fc1_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
off_elements = torch.tensor(
list(set(tricksy_context.indices.mlp_indices_buffer_cpu.tolist()).difference(set(self.index_cache.gpu_cached_mlp_indices.tolist()))),
device='cpu',
dtype=torch.int32,
pin_memory=True
)
if off_elements.size(0) == 0:
self.fc1_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
return
new_ring_idx = (self.ring_idx + off_elements.size(0)) % self.index_cache.gpu_cached_mlp_indices.size(0)
if new_ring_idx > self.ring_idx:
# single contiguous update
self.index_cache.gpu_cached_mlp_indices[self.ring_idx:new_ring_idx] = off_elements
elif off_elements.size(0) > 0:
split = self.index_cache.gpu_cached_mlp_indices.size(0) - self.ring_idx
# end of ring
self.index_cache.gpu_cached_mlp_indices[self.ring_idx:] = off_elements[:split]
# beginning of ring
self.index_cache.gpu_cached_mlp_indices[:new_ring_idx] = off_elements[split:]
# Allocate
self.fc1_weight_diff = torch.empty((off_elements.size(0), self.config.hidden_size), dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.empty((off_elements.size(0)), dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.empty((off_elements.size(0), self.config.hidden_size), dtype=self.tricksy_config.dtype, device='cuda')
# Index
fc1wd = self.index_cache.indexed_fc1_weight[off_elements].pin_memory()
fc1bd = self.index_cache.indexed_fc1_bias[off_elements].pin_memory()
fc2wd = self.index_cache.indexed_fc2_weight[off_elements].pin_memory()
# Copy
self.fc1_weight_diff, self.fc1_bias_diff, self.fc2_weight_diff = batch_copy([fc1wd, fc1bd, fc2wd], tricksy_context.load_weight_stream)
def forward(self, *args, **kwargs):
# Wait for attention weights to get to GPU
torch.cuda.synchronize()
# Load next layer's attention weights
self.inputs.next_layer.load_weights(self.tricksy_context)
out = super().forward(*args, **kwargs)
if self.tricksy_config.full_offload:
self.fc1_weight = self.fc1_bias = self.fc2_weight = None
elif self.tricksy_context.is_prompt_phase:
# Only keep sparse MLP weights on GPU after prompt phase
self.fc1_weight = self.fc1_weight[self.index_cache.gpu_cached_mlp_indices.to('cuda')]
self.fc1_bias = self.fc1_bias[self.index_cache.gpu_cached_mlp_indices.to('cuda')]
self.fc2_weight = self.fc2_weight[self.index_cache.gpu_cached_mlp_indices.to('cuda')]
# Update ring buffers
if not self.tricksy_config.full_offload:
prev_ring_idx = self.ring_idx
self.ring_idx = (self.ring_idx + self.fc1_weight_diff.size(0)) % self.fc1_weight.size(0)
if self.ring_idx > prev_ring_idx:
# does not wrap around ring
self.fc1_weight[prev_ring_idx:self.ring_idx] = self.fc1_weight_diff
self.fc1_bias[prev_ring_idx:self.ring_idx] = self.fc1_bias_diff
self.fc2_weight[prev_ring_idx:self.ring_idx] = self.fc2_weight_diff
elif self.fc1_weight_diff.size(0) > 0:
# wraps around ring
split = self.fc1_weight_diff.size(0) - self.ring_idx
self.fc1_weight[prev_ring_idx:] = self.fc1_weight_diff[:split]
self.fc1_weight[:self.ring_idx] = self.fc1_weight_diff[split:]
self.fc1_bias[prev_ring_idx:] = self.fc1_bias_diff[:split]
self.fc1_bias[:self.ring_idx] = self.fc1_bias_diff[split:]
self.fc2_weight[prev_ring_idx:] = self.fc2_weight_diff[:split]
self.fc2_weight[:self.ring_idx] = self.fc2_weight_diff[split:]
self.fc1_weight_diff = self.fc2_weight_diff = self.fc1_bias_diff = None
self.tricksy_context.layer += 1
return out
class TricksyOPTDecoder(OPTDecoder, TricksyLayer):
def __init__(self, tricksy_config: TricksyConfig, disk_weights: OPTDiskWeights, tricksy_opt_for_causal_lm, tricksy_context: TricksyContext):
nn.Module.__init__(self)
self.config = tricksy_config.opt_config
self.dropout = self.config.dropout
self.layerdrop = self.config.layerdrop
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.vocab_size = self.config.vocab_size
self._use_flash_attention_2 = False
self.gradient_checkpointing = False
self.project_out = None
self.project_in = None
self.embed_tokens_weight = None
self.embed_positions = TricksyOPTLearnedPositionalEmbedding(tricksy_context)
self.tricksy_context = tricksy_context
self.layers: List[TricksyOPTDecoderLayer] = []
for i in range(self.config.num_hidden_layers):
pretrained_layer_num = self.config.num_hidden_layers - i - 1
sparsity_predictors = [load_mlp_sparsity_predictor(disk_weights.weight_path, pretrained_layer_num, tricksy_config.dtype)]
if sparsity_predictors[0] is None:
sparsity_predictors[0] = lambda x: F.linear(x, torch.rand((self.config.ffn_dim, self.config.hidden_size), device='cuda', dtype=tricksy_config.dtype))
self.layers.append(TricksyOPTDecoderLayer(
tricksy_config,
TricksyLayerInputs(
disk_weights=disk_weights,
layer_key_prefix=f'decoder.layers.{pretrained_layer_num}.',
# While computing MLP, load next attention
# While computing last MLP, load output embeddings (stored in TricksyOPTForCausalLM)
next_layer=self.layers[i - 1].self_attn if i > 0 else tricksy_opt_for_causal_lm,
sparsity_predictors=sparsity_predictors,
),
tricksy_context,
))
self.layers.reverse()
self.final_layer_norm = lambda x: x
self.inputs = TricksyLayerInputs(disk_weights=disk_weights, layer_key_prefix='decoder.')
def clear(self):
self.embed_tokens_weight = self.embed_positions.weight = None
for layer in self.layers:
layer.clear()
def embed_tokens(self, x):
return F.embedding(x, self.embed_tokens_weight, self.padding_idx)
def load_weights(self, tricksy_context: TricksyContext):
if self.embed_tokens_weight is None:
self.embed_tokens_weight, self.embed_positions.weight = batch_copy(
[
mmap_to_tensor(self.inputs.get_weight('embed_tokens.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('embed_positions.weight')[:], pin_memory=True),
],
tricksy_context.load_weight_stream,
)
def forward(self, *args, **kwargs):
# Wait for input embedding weights to get to GPU
torch.cuda.synchronize()
# While computing input embeddings, load first attention
self.layers[0].self_attn.load_weights(self.tricksy_context)
out = super().forward(*args, **kwargs)
# Wait for output embedding weights to get to GPU
torch.cuda.synchronize()
# No longer prompt phase after first full pass
self.tricksy_context.is_prompt_phase = False
# Load input embeddings while computing output
self.load_weights(self.tricksy_context)
return out
class TricksyOPTModel(OPTModel):
def __init__(self, tricksy_config: TricksyConfig, disk_weights: OPTDiskWeights, tricksy_opt_for_causal_lm, tricksy_context: TricksyContext):
nn.Module.__init__(self)
self.config = tricksy_config.opt_config
self.tricksy_context = tricksy_context
self.decoder = TricksyOPTDecoder(tricksy_config, disk_weights, tricksy_opt_for_causal_lm, tricksy_context)
def clear(self):
self.decoder.clear()
def forward(self, *args, **kwargs):
out = super().forward(*args, **kwargs)
return out
# who's got the weights?
# [InputEmbedding, Attention.0, MLP.0, Attention.1, MLP.1, ..., OutputEmbedding]
# [TricksyOPTDecoder, TricksyOPTAttention.0, TricksyOPTDecoderLayer.0, TricksyOPTAttention.1, TricksyDecoderLayer.1, ..., TricksyOPTForCausalLM]
#
# 1. Prompt pass: Before computing layer, send full dense weights to GPU. After computing layer, only keep sparse weights on GPU.
# 2. Generation passes: Before computing layer, compute and send sparse weight diff to GPU.
class TricksyOPTForCausalLM(OPTForCausalLM, TricksyLayer):
def __init__(self, tricksy_config: TricksyConfig, disk_weights: OPTDiskWeights):
nn.Module.__init__(self)
self.config = disk_weights.config
self.generation_config = GenerationConfig.from_model_config(self.config) if self.can_generate() else None
self.tricksy_context = TricksyContext(tricksy_config, self.config)
self.model = TricksyOPTModel(tricksy_config, disk_weights, self, self.tricksy_context)
self.final_layer_norm_weight = self.lm_head_weight = self.final_layer_norm_bias = None
# double stacking tricksy!
self.final_layer_norm = lambda x: F.layer_norm(x, (self.config.hidden_size,), self.final_layer_norm_weight, self.final_layer_norm_bias)
self.lm_head = lambda x: F.linear(self.final_layer_norm(x), self.lm_head_weight)
self.inputs = TricksyLayerInputs(disk_weights=disk_weights, layer_key_prefix='decoder.', next_layer=self.model.decoder)
def clear(self):
self.model.clear()
def load_weights(self, tricksy_context: TricksyContext):
if self.final_layer_norm_weight is None:
self.final_layer_norm_weight, self.lm_head_weight, self.final_layer_norm_bias = batch_copy(
[
mmap_to_tensor(self.inputs.get_weight('final_layer_norm.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('embed_tokens.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('final_layer_norm.bias')[:], pin_memory=True),
],
tricksy_context.load_weight_stream,
)
def forward(self, *args, **kwargs):
torch.cuda.synchronize()
start = time.time()
out = super().forward(*args, **kwargs)
torch.cuda.synchronize()
self.tricksy_context.forward_times.append(time.time() - start)
self.tricksy_context.layer = 0
return out
def generate(self, *args, **kwargs):
# Load input embeddings for first token
self.model.decoder.load_weights(self.tricksy_context)
torch.cuda.synchronize()
out = super().generate(*args, **kwargs)
return out