Spaces:
Sleeping
Sleeping
aus10powell
commited on
Commit
β’
8b9234c
1
Parent(s):
2d7e7e3
Update inference.py
Browse files- inference.py +133 -152
inference.py
CHANGED
@@ -1,168 +1,149 @@
|
|
1 |
-
#
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
5 |
-
# python3 object_detection_yolo.py --image=bird.jpg --device 'cpu'
|
6 |
-
# python3 object_detection_yolo.py --image=bird.jpg --device 'gpu'
|
7 |
-
# python3 test2.py --image=/Users/apowell/Downloads/HerringInTrap.JPG --device 'cpu'
|
8 |
-
# python3 test2.py --video=/Users/apowell/Downloads/sampleFull.avi --device 'cpu'
|
9 |
-
# sampleFull.avi
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
import argparse
|
13 |
import sys
|
14 |
-
import numpy as np
|
15 |
import os.path
|
16 |
-
import
|
17 |
-
import
|
18 |
-
import streamlit as st
|
19 |
-
|
20 |
-
matplotlib.use("Agg")
|
21 |
-
from inference_utils import *
|
22 |
-
from PIL import Image, ImageOps
|
23 |
import logging
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
# Set default static images for testing while working locally
|
29 |
-
DEFAULT_IMAGE = "/Users/apowell/Downloads/HerringInTrap.JPG"
|
30 |
-
DEFAULT_VIDEO = "/Users/apowell/Downloads/sampleFull.avi"
|
31 |
-
YOUTUBE = "https://www.youtube.com/watch?v=CbB7vl_HUbU&ab_channel=AustinPowell"
|
32 |
-
|
33 |
-
|
34 |
-
def main(input_file=None, is_image=False, device="cpu"):
|
35 |
-
"""
|
36 |
-
Run main inference script. Returns annotated frames from inference and counts of fish.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
- input_file: image or video file input from OpenCV
|
40 |
-
- is_image: Binary denoting single image
|
41 |
-
- device: CPU or GPU processing
|
42 |
-
"""
|
43 |
-
## Initialize the parameters
|
44 |
-
# Confidence threshold
|
45 |
-
conf_threshold = 0.5
|
46 |
-
# Non-maximum suppression threshold (maximum bounding box)
|
47 |
-
nms_threshold = 0.05
|
48 |
-
input_width = 416 # Width of network's input image
|
49 |
-
input_height = 416 # Height of network's input image
|
50 |
-
|
51 |
-
# Generic name assignment for output file
|
52 |
-
outputFile = "yolo2_out_py.mp4"
|
53 |
-
# Load class name
|
54 |
-
classes = "Herring"
|
55 |
-
# Give the configuration and weight files for the model and load the network using them.
|
56 |
-
modelConfiguration = "herring.cfg"
|
57 |
-
modelWeights = "herring_final.weights"
|
58 |
-
|
59 |
-
# Centroid tracker to Id specific objects (NOTE: This is temporary and not fully tested)
|
60 |
-
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
61 |
-
|
62 |
-
# Process inputs
|
63 |
-
if (
|
64 |
-
type(input_file) == cv.VideoCapture
|
65 |
-
): # Video objects passed from something like Streamlit
|
66 |
-
cap = input_file
|
67 |
-
elif type(input_file) == str: # For local uploads
|
68 |
-
cap = cv.VideoCapture(input_file)
|
69 |
-
logging.info("INFO: Loading file locally: {}".format(input_file))
|
70 |
-
else:
|
71 |
-
sys.exit(
|
72 |
-
"Input file is of type {} and not solved for.".format(type(input_file))
|
73 |
-
)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
)
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
counts = postprocess(
|
125 |
-
frame=frame,
|
126 |
-
outs=outs,
|
127 |
-
tracker=tracker,
|
128 |
-
conf_threshold=conf_threshold,
|
129 |
-
nms_threshold=nms_threshold,
|
130 |
-
classes=classes,
|
131 |
)
|
132 |
-
count_list.append(counts)
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
# Save frame
|
140 |
-
saved_frames.append(frame.astype(np.uint8)) # )
|
141 |
-
|
142 |
-
# Write the frame with the detection boxes
|
143 |
-
if is_image:
|
144 |
-
cv.imwrite(outputFile, frame.astype(np.uint8))
|
145 |
else:
|
146 |
-
|
147 |
-
|
148 |
-
timestamps.append(cap.get(cv.CAP_PROP_POS_MSEC))
|
149 |
-
calc_timestamps.append(calc_timestamps[-1] + 1000 / video_fps)
|
150 |
-
# Calculate time difference for different timestamps
|
151 |
-
time_diffs = [
|
152 |
-
abs(ts - cts) for i, (ts, cts) in enumerate(zip(timestamps, calc_timestamps))
|
153 |
-
]
|
154 |
-
|
155 |
-
with open("your_file.csv", "w") as f:
|
156 |
-
for i in range(len(count_list)):
|
157 |
-
f.write(
|
158 |
-
f"{count_list[i]}, {time_diffs[i+1]}, {timestamps[i]}, {calc_timestamps[i]}\n"
|
159 |
-
)
|
160 |
-
|
161 |
-
return saved_frames, count_list, timestamps
|
162 |
-
|
163 |
|
|
|
164 |
if __name__ == "__main__":
|
165 |
-
|
166 |
-
# Script below to enable running pure inference from command line
|
167 |
-
file_path = "/Users/apowell/Downloads/2_2018-04-27_15-50-53.mp4"
|
168 |
-
saved_frames, counts, timestamps = main(input_file=file_path)
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import matplotlib
|
3 |
|
4 |
+
# Use Agg backend for Matplotlib
|
5 |
+
matplotlib.use("Agg")
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Libraries for the app
|
8 |
+
import streamlit as st
|
9 |
+
import time
|
10 |
+
import io
|
11 |
import argparse
|
12 |
import sys
|
|
|
13 |
import os.path
|
14 |
+
import subprocess
|
15 |
+
import tempfile
|
|
|
|
|
|
|
|
|
|
|
16 |
import logging
|
17 |
|
18 |
+
# Visualization libraries
|
19 |
+
import altair as alt
|
20 |
+
import av
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Machine Learning and Image Processing libraries
|
23 |
+
import numpy as np
|
24 |
+
import pandas as pd
|
25 |
+
import cv2 as cv
|
26 |
+
from PIL import Image, ImageOps
|
27 |
+
from tqdm import tqdm
|
28 |
+
|
29 |
+
# Custom modules
|
30 |
+
import inference
|
31 |
+
from app_utils import *
|
32 |
+
|
33 |
+
@st.cache_data
|
34 |
+
def load_video(video_url):
|
35 |
+
video_bytes = open(video_url, "rb").read()
|
36 |
+
return video_bytes
|
37 |
+
|
38 |
+
@st.cache_data
|
39 |
+
def load_historical(fpath):
|
40 |
+
return pd.read_csv(fpath)
|
41 |
+
|
42 |
+
st.set_page_config(layout="wide")
|
43 |
+
|
44 |
+
# Define the main function to run the Streamlit app
|
45 |
+
def run_app():
|
46 |
+
# Set Streamlit options
|
47 |
+
st.set_option("deprecation.showfileUploaderEncoding", False)
|
48 |
+
|
49 |
+
# App title and description
|
50 |
+
st.title("MIT Count Fish Counter")
|
51 |
+
st.text("Upload a video file to detect and count fish")
|
52 |
+
|
53 |
+
# Example video URL or file path (replace with actual video URL or file path)
|
54 |
+
video_url = "yolo2_out_py.mp4"
|
55 |
+
video_bytes = load_video(video_url)
|
56 |
+
|
57 |
+
# Load historical herring
|
58 |
+
df_historical_herring = load_historical(fpath="herring_count_all.csv")
|
59 |
+
|
60 |
+
tab1, map_tab = st.tabs(["π Chart", "Map of Fishery Locations"])
|
61 |
+
|
62 |
+
# Create two columns for layout
|
63 |
+
col1, col2 = st.columns(2)
|
64 |
+
|
65 |
+
## Col1 #########################################
|
66 |
+
with col1:
|
67 |
+
## Initial visualizations
|
68 |
+
# Plot historical data
|
69 |
+
st.altair_chart(
|
70 |
+
plot_historical_data(df_historical_herring),
|
71 |
+
use_container_width=True,
|
72 |
)
|
73 |
|
74 |
+
# Display map of fishery locations
|
75 |
+
st.subheader("Map of Fishery Locations")
|
76 |
+
st.map(
|
77 |
+
pd.DataFrame(
|
78 |
+
np.random.randn(5, 2) / [50, 50] + [42.41, -71.38],
|
79 |
+
columns=["lat", "lon"],
|
80 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
|
|
82 |
|
83 |
+
## Col2 #########################################
|
84 |
+
with col2:
|
85 |
+
# Display example processed video
|
86 |
+
st.subheader("Example of processed video")
|
87 |
+
st.video(video_bytes)
|
88 |
+
st.subheader("Upload your own video...")
|
89 |
+
|
90 |
+
# Initialize accepted file types for upload
|
91 |
+
img_types = ["jpg", "png", "jpeg"]
|
92 |
+
video_types = ["mp4", "avi"]
|
93 |
+
|
94 |
+
# Allow user to upload an image or video file
|
95 |
+
uploaded_file = st.file_uploader("Select an image or video file...", type=img_types + video_types)
|
96 |
+
|
97 |
+
# Display the uploaded file
|
98 |
+
if uploaded_file is not None:
|
99 |
+
if str(uploaded_file.type).split("/")[-1] in img_types:
|
100 |
+
# Display uploaded image
|
101 |
+
image = Image.open(uploaded_file)
|
102 |
+
st.image(image, caption="Uploaded image", use_column_width=True)
|
103 |
+
|
104 |
+
# TBD: Inference code to run and display for single image
|
105 |
+
|
106 |
+
elif str(uploaded_file.type).split("/")[-1] in video_types:
|
107 |
+
# Display uploaded video
|
108 |
+
st.video(uploaded_file)
|
109 |
+
|
110 |
+
# Convert streamlit video object to OpenCV format to run inferences
|
111 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
112 |
+
tfile.write(uploaded_file.read())
|
113 |
+
vf = cv.VideoCapture(tfile.name)
|
114 |
+
|
115 |
+
# Run inference on the uploaded video
|
116 |
+
with st.spinner("Running inference..."):
|
117 |
+
frames, counts, timestamps = inference.main(vf)
|
118 |
+
logging.info("INFO: Completed running inference on frames")
|
119 |
+
st.balloons()
|
120 |
+
|
121 |
+
# Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit
|
122 |
+
streamlit_video_file = frames_to_video(frames=frames, fps=11)
|
123 |
+
|
124 |
+
# Show processed video and provide download button
|
125 |
+
st.video(streamlit_video_file)
|
126 |
+
st.download_button(
|
127 |
+
label="Download processed video",
|
128 |
+
data=streamlit_video_file,
|
129 |
+
mime="mp4",
|
130 |
+
file_name="processed_video.mp4",
|
131 |
+
)
|
132 |
+
|
133 |
+
# Create dataframe for fish counts and timestamps
|
134 |
+
df_counts_time = pd.DataFrame(
|
135 |
+
data={"fish_count": counts, "timestamps": timestamps[1:]}
|
136 |
+
)
|
137 |
+
|
138 |
+
# Display fish count vs. timestamp chart
|
139 |
+
st.altair_chart(
|
140 |
+
plot_count_date(dataframe=df_counts_time),
|
141 |
+
use_container_width=True,
|
142 |
+
)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
else:
|
145 |
+
st.write("No file uploaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
# Run the app if the script is executed directly
|
148 |
if __name__ == "__main__":
|
149 |
+
run_app()
|
|
|
|
|
|